Finite Element Simulation and Analysis of Size Effect in Micro-Milling Process

2009 ◽  
Vol 16-19 ◽  
pp. 1159-1163 ◽  
Author(s):  
Xue Mei Yu ◽  
Ya Zhou Sun ◽  
Hai Tao Liu

In order to determine the minimum thickness of cutting under different cutting condition of aluminum alloy materials 2A12 of micro-milling, research the size effect caused by the cutting edge radius and few microns per tooth in micro-milling process. Using thermal coupling model of Johnson-Cook as a material model of the workpiece, using Johnson-Cook shear failure of the law as part of the failure criteria, using coupled plane strain thermal units and hybrid adaptive grid technology to mesh, the friction between the tool and workpiece take the amendment Coulomb's law that combine with the sliding friction areas and areas of the adhesive friction, to the micro-milling by nonlinear and elastic-plastic finite element simulation. Through finite element analysis, the ratio of minimum radius of thickness to the cutting edge tool radius under different conditions of cutting speed and cutter blade was got, the size effect, stress field and cutting force under different cutting depth was got, and comparing and analysis the results, getting the various factors impact on the size effect of micro-milling, it provide a basis for the actual processing.

2012 ◽  
Vol 522 ◽  
pp. 245-248 ◽  
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
De Bin Shan ◽  
Yan Quan Geng

There are lots of titanium alloy parts which have large-scale micro-structures in astronautic structure and medical implants, so the micro milling becomes one of the effective processing methods in getting the surface micro-structure. Because the titanium alloy has high caking property in processing, it needs a research on the cutting heat and force in order to get better machining precision and surface quality. According to the finite element theory in elastic and plasticity, the influence of cutting speed to the cutting heat and force is got by finite element simulation analysis to the titanium material TC4 in cutting process. It can get the simulation results of cutting heat and force in the micro milling processing by finite element analysis, and then compared, the basic influence which the cutting speed to the cutting heat and force is got. The correctness of the result is checked through cutting experiments.


SIMULATION ◽  
2020 ◽  
Vol 96 (12) ◽  
pp. 957-968
Author(s):  
Luan Yihan ◽  
Meng Xiangyue ◽  
Xue Liang ◽  
Steven Y Liang ◽  
Lu Xiaohong

The anisotropy of single crystal copper and crystal orientation have a significant effect on the micro-milling process. At present, there is no systematic and perfect theory to explain the influence of single crystal orientation on the micro-milling process. Therefore, it is urgent to conduct an in-depth study on the micro-milling process of single crystal copper. In this paper, based on the theory of crystal plasticity, considering the anisotropy of single crystal copper, the VUMAT material subroutine of single crystal copper is programmed by the Fortran language, and the crystal plastic constitution is introduced into the finite element simulation. The model of the micro-milling tool and work-piece is established and meshed. Considering the friction among the tool and the work-piece, material removal, etc., the three-dimensional finite element simulation model of single crystal copper micro-milling process is achieved by ABAQUS software. The validity of the simulation model of the micro-milling process of single crystal copper considering the single crystal plastic constitution is verified by experimental micro-milling forces. The research has explored a feasible way to predict the micro-milling force of single crystal copper, and has provided a reference for revealing the micro-milling mechanism of single crystal materials.


2012 ◽  
Vol 204-208 ◽  
pp. 4831-4834
Author(s):  
Zheng Bao Lei ◽  
Lan Yang ◽  
Mu Xi Lei

This study is based on UG and finite element simulation software VPG and LS-DYNA to simulate,finally get how the automotive quality,impact speed and angle influence on rounded cutting edge rules of CST and collision characteristics .So provide a strong basis to the application of CST and car safety.


Author(s):  
Padmaja Tripathy ◽  
Kalipada Maity

This paper presents a modeling and simulation of micro-milling process with finite element modeling (FEM) analysis to predict cutting forces. The micro-milling of Inconel 718 is conducted using high-speed steel (HSS) micro-end mill cutter of 1mm diameter. The machining parameters considered for simulation are feed rate, cutting speed and depth of cut which are varied at three levels. The FEM analysis of machining process is divided into three parts, i.e., pre-processer, simulation and post-processor. In pre-processor, the input data are provided for simulation. The machining process is further simulated with the pre-processor data. For data extraction and viewing the simulated results, post-processor is used. A set of experiments are conducted for validation of simulated process. The simulated and experimental results are compared and the results are found to be having a good agreement.


2012 ◽  
Vol 499 ◽  
pp. 208-212
Author(s):  
Ai Hua Gao ◽  
Fu Rong Wang ◽  
Jian Xin Zhang

The paper make the service life of relieving formed milling cutter as the optimization objective, proceed the simulation study on the mechanical degree of cutter, cutting data. The concrete method is that the orthogonal milling model is established to simulate the simulation milling process, some basic parameters which are obtained in the machining process are analyzed and discussed. The results indicate that the finite element simulation of the metal cutting processing can analyze quantitatively some physical properties, such as the cutting force, stress, strain and so on, the traditional way of qualitative analysis is changed. The state of machining is in favour of grasping in the theory, the theory and technology are provided to establish the proper processing technology strategy.


2015 ◽  
Vol 667 ◽  
pp. 326-331
Author(s):  
Peng Zhang ◽  
Yun Long Du ◽  
Bo Wang ◽  
De Bin Shan

Elgiloy is a cobalt-based alloy with excellent physical and chemical performance, which is used widely in medical and industrial applications. In this paper, the professional finite element analysis software for metal cutting is used to establish the finite element simulation model of micro cutting this kind of cobalt-based alloy, and the effect of feed rate, which is considered as the most important processing parameter, on the cutting force of micro cutting Elgiloy is analyzed. The cutting force measurement system based on ultra-precision micro milling machine tool is established for experimental study on the cutting force of micro milling Elgiloy by using ultra-fine gain tungsten carbide micro milling tool. The cutting force is measured with different feed rate parameters and the influence of the parameters on the cutting force is analyzed. The simulation and experimental results show that the trends observed at the micro scale are the same as the trends for machining at the macro scale, which implies that the Elgiloy material behaves in a similar manner at both length scales.


2016 ◽  
Vol 861 ◽  
pp. 50-55 ◽  
Author(s):  
Pu Zhang ◽  
Hong Tao Zhu ◽  
Chuan Zhen Huang ◽  
Hong Liang Tang ◽  
Yang Yao ◽  
...  

The cutting edge radius and cutting thickness as well as feed rate are in the same order of magnitude in micro-cutting. So it will appear a situation that the chip cannot be formed when the cutting thickness is less than a certain value which is the minimum cutting thickness. It is possible to find a method that can determine the minimum cutting thickness in the finite element simulation of micro-cutting according. In this paper, a series of finite element simulations of different workpiece materials in micro-cutting are carried out and several different minimum cutting thicknesses are obtained. It is shown that the minimum cutting thickness is related to the workpiece material in micro-cutting. When the workpiece materials are different, the minimum cutting thicknesses obtained are also different in micro-cutting.


Sign in / Sign up

Export Citation Format

Share Document