Organic Pretreatment of Recycled Aggregates of Rural Construction Waste

2012 ◽  
Vol 161 ◽  
pp. 1-5
Author(s):  
Jun Liu ◽  
Yao Li ◽  
Xu Ming Wang ◽  
Run Qing Liu

Through using acetic acid resin, asphalt and urea resin organic pretreatment methods to pretreat the surface of rural construction waste, and testing of crush index and water absorption rate of recycled coarse aggregate after pretreatment, the research for the influence of organic pretreatment technology on physical and mechanical performance of recycled coarse aggregate. The results prove that organic infiltrating pretreatment technology can effectively enhance the density of the coarse aggregate and decrease the crush of recycled coarse aggregate index, in a certain extent. The crush index of recycled coarse aggregates after organic pretreatment decreases at almost 17.63%, what’s more, organic pretreatment technology can decrease the water absorption rate of coarse aggregate by a large margin. The water absorption rate of coarse aggregate can be reduced to a minimum of 2.03% which closes to the level of natural aggregates. Because of urea resin solidified into film at fast speed, high integrity and high wear resistance, and relatively cheap, urea resin’s pretreatment effects on recycled coarse aggregates is better than acetic acid resin and asphalt.

2011 ◽  
Vol 250-253 ◽  
pp. 1058-1061
Author(s):  
Zhi Xing Zeng ◽  
Li Xing Su

On the premise of using the five dosage levels of recycled coarse aggregate, the paper primary study on the drying shrinkage and water absorption rate of recycled concrete hollow block in order to determine the maximum dosage of recycled coarse aggregate, then find out the relationship between the drying shrinkage and the water absorption rate of recycled concrete hollow block. The results showed that: the maximum dosage of recycled coarse aggregate can reach 100%; there is a quadratic relationship between the drying shrinkage and the water absorption rate of the block.


2017 ◽  
Vol 727 ◽  
pp. 1074-1078
Author(s):  
Gong Bing Yue ◽  
Qiu Yi Li ◽  
Gao Song

This paper studied the properties improvement of recycled coarse aggregate by the physical strengthening technology (particle-shaping method). Through the analysis for obtained properties which consist of density, crush index, bulk density and water absorption. etc of recycled coarse aggregates in different strengthening technologies, the categories of recycled coarse aggregate could be assessed and determined. The results showed that ordinary recycled coarse aggregates that was handled twice by using particle shaping equipment can achieve the standard of class Iaggregates and its water absorption ratio at 24h was 1.2%, the apparent density reached 2575kg/m3, crush index value was 9%, the void ratio was 45%, all property parameters were close to those of natural coarse aggregate.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 257
Author(s):  
Guoying Liu ◽  
Qiuyi Li ◽  
Jialin Song ◽  
Liang Wang ◽  
Haibao Liu ◽  
...  

Due to the large amount of old hardened cement mortar attached to the surface of aggregate and the internal micro-cracks formed by the crushing process, the water absorption, apparent density, and crushing index of recycled coarse aggregate are still far behind those of natural coarse aggregate. Based on the performance requirements of different qualities of recycled coarse aggregate, the performance differences of recycled coarse aggregate before and after physical strengthening were observed. The results showed that the physical strengthening technique can remove old hardened mortar and micro powder attached to the surface of recycled coarse aggregate by mechanical action, which can effectively improve the quality of recycled coarse aggregate. The optimum calcination temperature of the recycled coarse aggregate was 400 °C and the grinding time was 20 min. The contents of the attached mortar in recycled coarse aggregates of Class I, II, and III were 7.9%, 22.8%, and 39.7%, respectively. The quality of recycled coarse aggregate was closely related to the amount of mortar attached to the surface. The higher the mortar content, the higher the water absorption, lower apparent density, and higher crushing index of the recycled coarse aggregate.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2014 ◽  
Vol 911 ◽  
pp. 40-44 ◽  
Author(s):  
Muhammad Aqif Adam ◽  
Alawi Sulaiman ◽  
Che Mohd Som Said ◽  
Ayub M. Som ◽  
Azhari Samsu Bahruddin ◽  
...  

Palm oil industry produces huge amount of oil palm decanter cake (OPDC). Currently it is not yet commercialized however due to its characteristics, it can be used to produce oil palm decanter cake natural polymer composite (OPDC-NPC). NPC is a type of material made by combining natural fiber with polymer. Therefore the objective of this paper is to produce NPC from OPDC and then determine its mechanical and physical properties such as elasticity, stiffness, tensile strength and water absorption rate. The OPDC samples were collected from Felda Trolak Palm Oil Mill. Prior to NPC development, the oil was removed from OPDC using hexane soxhlet extraction method. OPDC-NPC was fabricated using molding method where the mixture of 95% polypropylene (PP) and 5% OPDC were mixed using twin-screw extruder. The results showed that OPDC-NPC has an elasticity of 2231 MPa, stiffness of 30 MPa, tensile strength of 32 MPa and water absorption rate of 0.16 % which was slightly better with the other types of fibers.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012059
Author(s):  
Sitti Fatimah Mhd Ramle ◽  
Aqilah Abdul Rahim ◽  
Nur Hafizzah Jusoh ◽  
Nurul Fazita Mohammad Rawi ◽  
Che Ku Abdullah Che Ku Alam

Abstract In recent times, awareness on plastic pollution had increase which brings innovation on new productions to be environmental friendly. Various polymers has been used to analyse the suitability to produce thin films. In this study, Poly lactic acid (PLA) and Polybutylene adipate terephthalate (PBAT) reinforced with microcrystalline cellulose (MCC) were investigated. MCC were produced from selected bamboo for obtaining cellulose, then followed by an acidic hydrolysis process for the processing of microcrystalline cellulose (MCC). In this study, the thin film are focusing on the barrier properties such as water absorption, solvent resistance and absorption test. From the results shows that, the lowest rate of water absorption rate is 1.9% by 1% B-MCC/PLA/PBAT, meanwhile, the highest rate of water absorption is 60.1% by 5% C-MCC/PLA/PBAT. The water absorption rate decrease gradually with the decreasing of amount of MCC in the samples. Lastly, the thin film samples can resist with oleic acid solvents as the condition of thin film samples is still remain but they were not resistance with xylene as the thin film samples were shrinked and degraded. This thin film have a potential to replace the non-biodegradable petrochemical polymer based on their properties such as food contact, availability and cost.


2018 ◽  
Vol 30 (3) ◽  
Author(s):  
Chai Teck Jung ◽  
Tang Hing Kwong ◽  
Koh Heng Boon

Abstract: This paper presents some experimental results and discusses the used of recycled foamed aggregates as natural coarse aggregates replacement in producing concrete. The physical properties of recycled foamed aggregates concrete were investigated. The properties studied are water absorption and drying shrinkage from the concrete early ages until the periods of 56 days. The 100 mm x 100 mm cube specimen was used to study the water absorption at the age of 7, 28 and 56 days. Meanwhile, the 100 mm x 100 mm x 300 mm length prism had been casted and used for drying shrinkage test for recycled foamed aggregates concrete. The foamed aggregates was produced from crushing recycled foamed concrete blocks. It were coated with cement paste to reduce its water absorption ability during casting process. Superplasticizer was used to maintain the workability of fresh concrete with a slump vary between 50 mm to 100 mm. The physical tests were conducted on recycled foamed aggregates to determine their initial properties such as loose bulk density, sieve analysis and water absorption rate. Recycled foamed aggregate concretes were produced with varied water cement ratio. The results obtained indicated that the linear elastic relationship between water cement ratio and water absorption rate. The higher the water cement ratio of concrete specimen will obtained higher water absorption rate. Vice versa, the density is low for drying shrinkage. The water absorption decreased while drying shrinkage becomes more stabilized over curing period.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zhiming Ma ◽  
Qin Tang ◽  
Dingyi Yang ◽  
Guangzhong Ba

Since China hosted the Olympic Games in 2008, a mass of construction and demolition (C&D) wastes were produced with the rapid urbanization construction. Recycling the C&D waste into recycled aggregates (RA) is an effective method for reducing the amount of C&D wastes. Many studies on the properties of RA and the durability of recycled aggregate concrete (RAC) were conducted in China over the past decade. Due to the restrictions of various languages, some valuable studies on the durability of RAC are hard to be acquired by the scholars around the world. Therefore, this paper is developed to review the studies on the durability of RAC in China, and the shrinkage behavior, chloride permeability, carbonation behavior, and freeze-thaw resistance of RAC are, respectively, introduced. Considering the waste concrete, bricks, and ceramics used in preparing RA are frequently mixed together in China, this study proposes an index of average water absorption rate to quantify the effects of RA types, quality, and replacement percentages on the durability of RAC. Meanwhile, the relationship between the average water absorption rate of RA and the durability parameters of RAC is established. Finally, the improving methods of RAC durability are introduced, and the RA particle shaping and carbonation modification are emphasized.


2014 ◽  
Vol 665 ◽  
pp. 192-195 ◽  
Author(s):  
Yu Zheng ◽  
Chang Sheng Pan ◽  
Jian Li ◽  
He Chi Pan ◽  
Jun Yi Hu ◽  
...  

Foam concrete products had high absorption rate due to a large number of bubbles dispersion in it.which has serious effects upon the overall thermal performance of material and the durability of construction.Three methods were studied which includes Organic Silicon hydrophobic agent、High fatty acids hydrophobic agent and hydrophobic agent F in order to reduce the water absorption rate.Results show that the water absorption rate was reduced significantly with mixed High fatty acids. The water absorption rate drops of 68.2%, and the organic silicon is in a second place , and the hydrophobic agent F is the worst.


2020 ◽  
Vol 24 (1) ◽  
pp. 55-59
Author(s):  
Guopeng Wu ◽  
Wenwu Chen ◽  
Kai Cui

In order to study the influence of dry-wet cycling on the deterioration characteristics of gypsum rocks and solve the problems encountered in engineering construction, in this study, gypsum rocks are taken as the research object. With the combination of laboratory test and theoretical analysis, the numerical simulation of particle flow is carried out, and the deterioration characteristics of physical and mechanical properties of gypsum rock under dry-wet cycling are studied. The results show that gypsum, quartz, zeolite and dolomite are the main components of gypsum rocks. Gypsum occupies the most components in gypsum rocks, so the various characteristics of gypsum greatly affect the characteristics of gypsum rocks. The process of water absorption and loss of gypsum is similar, which shows that the rate of water absorption or loss of gypsum is faster in the early stage, and tends to be stable in the later stage. The curve of the whole process of water absorption and loss is fitted by negative exponential function, and the effect is better. The larger the porosity of gypsum rock is, the better its water absorption performance is. Intergranular pore, dissolution pore and dissolution pore are the main pore types of gypsum rock. Intergranular pore is the main water absorption channel of gypsum rock. The cumulative water absorption increases with the increase of wetting and drying cycles. The change of water absorption curve is mainly manifested in water absorption rate and time. The more the number of wet-dry cycles is, the higher the water absorption rate in the early stage of water absorption is, the closer the characteristic curve to the coordinate axis of water absorption is, and the shorter the water absorption time is. In contrast, the shape difference of water loss curve is very small. It can be seen from this that in the process of wetting and drying cycle, the hydrophysical and hydrochemical processes promote each other, which changes the crystal structure and pore structure of gypsum rocks, reduces the crystal strength and increases the porosity, thus leading to the deterioration of the mechanical properties of gypsum rocks.


Sign in / Sign up

Export Citation Format

Share Document