Numerical Analysis on the Temperature Distribution of Steel Tube Reinforced Concrete Columns Subjected to 3-Side Heating

2012 ◽  
Vol 170-173 ◽  
pp. 2657-2660
Author(s):  
Lei Xu ◽  
Yu Bin Liu

The temperature fields of steel tube filled concrete columns are analyzed by a nonlinear FEM model in the paper. The theoretical results are validated by relative test results, and a good agreement is obtained. Using the theoretical models, the influencing laws of temperature rising time; section perimeter; steel reinforcement ratio and sectional core area ratio on temperature field of STRC subjected to 3-side fire are further discussed. By above parametric analysis, it has been found that the effects of heating time, sectional dimension and sectional core area ratio on temperature field are significant, but steel ratio has very little effect on temperature both of steel tube and of section surface.

2011 ◽  
Vol 243-249 ◽  
pp. 5089-5093 ◽  
Author(s):  
Lei Xu ◽  
Yu Bin Liu

Theoretical models to calculate the temperature field steel tubes reinforced columns are proposed by finite element program in this paper. The theoretical results are validated by test results, and they have a good agreement. Using the theoretical models, the influencing laws of temperature rising time; section perimeter; steel reinforcement ratio and sectional core area ratio on temperature field are further discussed. It has been found that the surface temperatures of steel tube reinforced columns increase obviously with temperature rising time, and the temperatures of steel tubes and core concrete increase slowly. The effects of sectional dimension and sectional core area ratio on temperature field are significant, but steel ratio has very little effect on temperature both of steel tube and of sectional center. These achievements make it possible to study further theoretical study on the mechanic performance of steel tube reinforced concrete columns in fire.


2012 ◽  
Vol 6 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Lei Xu ◽  
Jiangang Sun

The temperature field analysis method of steel tube reinforced columns under fire by finite element analysis software ABAQUS is proposed in this paper. The theoretical method is validated by tests, and the calculated results agree well with those of tests. On the basis of that, the influencing laws of temperature rising time; section perimeter; steel reinforcement ratio and sectional core area ratio on temperature field are discussed. It has been found that the surface temperatures of steel tube reinforced columns increase obviously with temperature rising time, and the temperatures of steel tubes and core concrete increase slowly. The effects of section size and sectional core area ratio on temperature field are significant, but steel ratio has very little effect on temperature both of steel tube and of sectional center. These achievements make it possible to study further theoretical study on the mechanic performance of steel tube reinforced concrete columns in fire.


2010 ◽  
Vol 163-167 ◽  
pp. 2089-2093 ◽  
Author(s):  
Lei Xu ◽  
Jian Gang Sun

The temperature field analysis method of steel tubes reinforced columns under fire by finite element analysis software ABAQUS is proposed in this paper. The theoretical method is validated by tests, and the calculated results agree well with those of tests. On the basis of that, the influencing laws of section perimeter; steel reinforcement ratio and sectional core area ratio on temperature field are discussed. It has been found that the effects of section size and sectional core area ratio on temperature field are significant, but steel ratio has very little effect on temperature both of steel tube and of sectional center. These achievements make it possible to study further theoretical study on the fire resistance of steel tube reinforced concrete columns.


2010 ◽  
Vol 163-167 ◽  
pp. 2564-2570
Author(s):  
Bin Yang ◽  
Jin Hua Huang ◽  
Chun Jiao Lin ◽  
Xing Kun Wen ◽  
Mao Jun Liu

Based on the investigation of a constructing dumbbell-shaped concrete-filled steel arch bridge in Nanning, Guangxi, continuous on-site experimental researches on temperature field and its effects were carried out under the influence of hydration heat of concrete in the molding process of concrete-filled dumb-bell steel tubular arch bridge. On the basis of measured data, analysis on time-history law of temperature field and its effect under the impact of hydration heat of concrete of composite structure of concrete-filled steel tubes is made. The results reveal that temperature variation of hydration heat of the concrete within the steel tube is showed as follows: “Temperature up-continuous high temperature-temperature down-balance”. The structural temperature field, generated under the effect of hydration hea in the process of molding arch rib, is nonlinear temperature field. Concrete hydration temperature effect of crown section basically changes with temperature field simultaneously, while the residual strain of arch foot section is relatively large; hydration temperature effect of L/4 Section emerges peak fluctuations in concrete pouring process and finally levels off. Hydration temperature field of concrete has a great effect on crown section, which makes the steel tube continuously withstand the tension and compression alternatively, while the influence on the arch foot steel tube is not obvious. Surface strains of L/8, L/4, 3L/8 sections of steel tube transit from single-wave peak to dual-wave peak and finally turn into a single wave peak.


2014 ◽  
Vol 644-650 ◽  
pp. 5019-5022
Author(s):  
Xue Feng Liu ◽  
Qing Xin Ren ◽  
Lian Guang Jia

In this paper, temperature field analysis of concrete filled steel tube reinforced concrete columns in fire has been carried on. A finite element model for concrete filled steel tube reinforced concrete columns in fire is developed by ABAQUS. The cross-sectional temperature field distribution regularity of concrete filled steel tube reinforced concrete columns in fire has been obtained. Parameter analysis such as fire duration time and steel ratio on the column section temperature field is conducted, and this provide the reference for the further analysis of concrete filled steel tube reinforced concrete columns.


Author(s):  
Matheus Fernandes ◽  
Silvana De Nardin ◽  
Fernando Menezes de Almeida Filho

abstract: In this paper, a computational code was developed to obtain M-N interaction curves for rectangular concrete-filled steel tube columns considering the strain compatibility in the cross-section. Considering the composite section subjected to uniaxial bending moments, expressions were developed to determine normal force, moment resistance, neutral axis depth and components resistance of cross-section. Such expressions were implemented in a computational tool developed to the authors and that allows to obtain the M-N pairs of strength. The steel and concrete ultimate strains were defined with the aid of the Brazilian standard for reinforced concrete structures ABNT NBR 6118. The obtained results were compared to simplified curves defined according to the theoretical models of ABNT NBR 8800, ABNT NBR 16239, EN 1994-1-1 and literature data. The proposed model showed good agreement with literature results and had good precision to estimate the ultimate moment values. To further understand the resistance of composite columns under uniaxial bending moments, parametric study was performed to evaluate the influence of the compressive strength of concrete, yielding strength of steel and steel area ratio on M-N interaction curves. The results indicate that the yielding strength of steel and the steel area ratio were the variables that most influenced the values of composite columns resistance (normal force and bending moment).


Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


2008 ◽  
Vol 400-402 ◽  
pp. 513-518 ◽  
Author(s):  
Yong Chang Guo ◽  
Pei Yan Huang ◽  
Yang Yang ◽  
Li Juan Li

The improvement of the load carrying capacity of concrete columns under a triaxial compressive stress results from the strain restriction. Under a triaxial stress state, the capacity of the deformation of concrete is greatly decreased with the increase of the side compression. Therefore, confining the deformation in the lateral orientation is an effective way to improve the strength and ductility of concrete columns. This paper carried out an experimental investigation on axially loaded normal strength concrete columns confined by 10 different types of materials, including steel tube, glass fiber confined steel tube (GFRP), PVC tube, carbon fiber confined PVC tube (CFRP), glass fiber confined PVC tube (GFRP), CFRP, GFRP, polyethylene (PE), PE hybrid CFRP and PE hybrid GFRP. The deformation, macroscopical deformation characters, failure mechanism and failure modes are studied in this paper. The ultimate bearing capacity of these 10 types of confined concrete columns and the influences of the confining materials on the ultimate bearing capacity are obtained. The advantages and disadvantages of these 10 types of confining methods are compared.


2014 ◽  
Vol 1040 ◽  
pp. 965-968 ◽  
Author(s):  
Yuliana K. Atroshenko ◽  
Irina P. Ozerova ◽  
Pavel A. Strizhak

In the present article the question of simulation of nonstationary process of heat transport in a sensitive element of the thermoelectric transformer with an uninsulated seal is considered. The model allows defining and comparing the heating time of a thermocouple junction up to the given temperature for different types of thermocouples. In this article the values obtained by means of modelling the heat time of different thermocouples and also a temperature field in a sensitive element of the thermoelectric transformer are given.


2007 ◽  
Vol 353-358 ◽  
pp. 2003-2006 ◽  
Author(s):  
Wei Tan ◽  
Chang Qing Sun ◽  
Chun Fang Xue ◽  
Yao Dai

Method of Lines (MOLs) is introduced to solve 2-Dimension steady temperature field of functionally graded materials (FGMs). The main idea of the method is to semi–discretized the governing equation of thermal transfer problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs with functions of thermal properties. As numerical examples, six kinds of material thermal conductivity functions, i.e. three kinds of polynomial functions, an exponent function, a logarithmic function, and a sine function are selected to simulate spatial thermal conductivity profile in FGMs respectively. The steady-state temperature fields of 2-D thermal transfer problem are analyzed by the MOLs. Numerical results show that different material thermal conductivity function has obvious different effect on the temperature field.


Sign in / Sign up

Export Citation Format

Share Document