The Study on Urban Planning Based on 3D City Model

2012 ◽  
Vol 174-177 ◽  
pp. 2490-2493 ◽  
Author(s):  
Chun Yu Pang ◽  
Qing Yin

One of the most important developments in GIS technology is the ability to extend two-dimensional analytical functionality into the third dimension. The approach of modeling objects for three-dimensional (3D) descriptions of the real world has been very useful for some urban applications such as planning, construction, management and representation of the urban sceneries. 3D city model is basically a computerized model or digital model of a city. Normally 3D city model delivers a true picture and real scene of the ground and enable the planners to view the locations of services and real places in an intuitive and use-friendly way. And there are many useful applications of 3D city model in urban planning analysis, noise propagation simulations and flood simulations. Nowadays, 3D city models play a more and more important role in GIS.

Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. <br><br> The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


2021 ◽  
Vol 27 (2) ◽  
pp. 1-14
Author(s):  
Juho-Pekka Virtanen ◽  
Arttu Julin ◽  
Kaisa Jaalama ◽  
Hannu Hyyppä

Three-dimensional city models are an increasingly common data set maintained by many cities globally. At the same time, the focus of research has shifted from their production to their utilization in application development. We present the implementation of a demonstrator application combining the online visualization of a 3D city information model with the data from an application programming interface. By this, we aim to demonstrate the combined use of city APIs and 3D geospatial assets, promote their use for application development and show the performance of existing, openly available tools for 3D city model application development


Author(s):  
Z. H. Mohd ◽  
U. Ujang ◽  
T. Liat Choon

Heritage house is part of the architectural heritage of Malaysia that highly valued. Many efforts by the Department of Heritage to preserve this heritage house such as monitoring the damage problems of heritage house. The damage problems of heritage house might be caused by wooden decay, roof leakage and exfoliation of wall. One of the initiatives for maintaining and documenting this heritage house is through Three-dimensional (3D) of technology. 3D city models are widely used now and much used by researchers for management and analysis. CityGML is a standard tool that usually used by researchers to exchange, storing and managing virtual 3D city models either geometric and semantic information. Moreover, it also represent multi-scale of 3D model in five level of details (LoDs) whereby each of level give a distinctive functions. The extension of CityGML was recently introduced and can be used for problems monitoring and the number of habitants of a house.


Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. <br><br> The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


2014 ◽  
Vol 3 (3) ◽  
pp. 35-49 ◽  
Author(s):  
Jan Klimke ◽  
Benjamin Hagedorn ◽  
Jürgen Döllner

Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. This paper introduces a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.


2018 ◽  
Vol 7 (9) ◽  
pp. 339 ◽  
Author(s):  
Mehmet Buyukdemircioglu ◽  
Sultan Kocaman ◽  
Umit Isikdag

3D city models have become crucial for better city management, and can be used for various purposes such as disaster management, navigation, solar potential computation and planning simulations. 3D city models are not only visual models, and they can also be used for thematic queries and analyzes with the help of semantic data. The models can be produced using different data sources and methods. In this study, vector basemaps and large-format aerial images, which are regularly produced in accordance with the large scale map production regulations in Turkey, have been used to develop a workflow for semi-automatic 3D city model generation. The aim of this study is to propose a procedure for the production of 3D city models from existing aerial photogrammetric datasets without additional data acquisition efforts and/or costly manual editing. To prove the methodology, a 3D city model has been generated with semi-automatic methods at LoD2 (Level of Detail 2) of CityGML (City Geographic Markup Language) using the data of the study area over Cesme Town of Izmir Province, Turkey. The generated model is automatically textured and additional developments have been performed for 3D visualization of the model on the web. The problems encountered throughout the study and approaches to solve them are presented here. Consequently, the approach introduced in this study yields promising results for low-cost 3D city model production with the data at hand.


2020 ◽  
Vol 9 (8) ◽  
pp. 476 ◽  
Author(s):  
Dušan Jovanović ◽  
Stevan Milovanov ◽  
Igor Ruskovski ◽  
Miro Govedarica ◽  
Dubravka Sladić ◽  
...  

The Smart Cities data and applications need to replicate, as faithfully as possible, the state of the city and to simulate possible alternative futures. In order to do this, the modelling of the city should cover all aspects of the city that are relevant to the problems that require smart solutions. In this context, 2D and 3D spatial data play a key role, in particular 3D city models. One of the methods for collecting data that can be used for developing such 3D city models is Light Detection and Ranging (LiDAR), a technology that has provided opportunities to generate large-scale 3D city models at relatively low cost. The collected data is further processed to obtain fully developed photorealistic virtual 3D city models. The goal of this research is to develop virtual 3D city model based on airborne LiDAR surveying and to analyze its applicability toward Smart Cities applications. It this paper, we present workflow that goes from data collection by LiDAR, through extract, transform, load (ETL) transformations and data processing to developing 3D virtual city model and finally discuss its future potential usage scenarios in various fields of application such as modern ICT-based urban planning and 3D cadaster. The results are presented on the case study of campus area of the University of Novi Sad.


Author(s):  
M. Corongiu ◽  
G. Tucci ◽  
E. Santoro ◽  
O. Kourounioti

<p><strong>Abstract.</strong> A 3D city model is a representation of an urban environment with a three-dimensional geometry of common urban objects and structures, with buildings as the most prominent feature. In the last decades, 3D city models appear to have been predominantly used for visualisation; however, nowadays they are being increasingly employed in a number of domains and for a broad range of tasks beyond visualisation. The MUIF (Modello Unico dell’Infrastruttura Fisica) project, here illustrated as a case study, refers to the implementation of a single spatial model of the infrastructure of Italy’s railway system (RFI).</p><p> The authors describe preliminary results and the critical aspects of the study they are carrying out, explaining the processes and methodology to model all datasets into a single integrated spatial model as the reference base for future continuously updates. The case study refers to data collected by different sources and at various resolutions. An integrated spatial Database has been used for modelling topographic 3D objects, traditionally implemented in a 3D city model, as well as other specific 3D objects, related to the railway infrastructure that, usually, aren’t modelled in a 3D city model, following the same methodology as the first ones.</p>


Author(s):  
K. Kumar ◽  
A. Labetski ◽  
H. Ledoux ◽  
J. Stoter

<p><strong>Abstract.</strong> The Level of Detail (LOD) concept in CityGML 2.0 is meant to differentiate the multiple representations of semantic 3D city models. Despite the popularity and general acceptance of the concept by the practitioners and stakeholders in 3D city modelling, there are still some limitations. While the CityGML LOD concept is well defined for buildings, bridges, tunnels, and to some extent for roads, there is no clear definition of LODs for terrain/relief, vegetation, land use, water bodies, and generic city objects in CityGML. In addition, extensive research has been done to refine the LOD concept of CityGML for buildings but little is known on requirements and possibilities to model city object types as terrain at different LODs. To address this gap, we focus in this paper on the terrain of a 3D city model and propose a framework for modelling terrains at different LODs in CityGML. As a proof of concept of our framework, we implemented a software prototype to generate terrain models with other city features integrated (e.g. buildings) at different LODs in CityGML.</p>


Author(s):  
S. Artese

The paper describes the implementation of the 3D city model of the pedestrian area of Cosenza, which in recent years has become the Bilotti Open Air Museum (MAB). For this purpose were used both the data available (regional technical map, city maps, orthophotos) and acquired through several surveys of buildings and "Corso Mazzini" street (photos, topographic measurements, laser scanner point clouds). In addition to the urban scale model, the survey of the statues of the MAB was carried out. By means of data processing, the models of the same statues have been created, that can be used as objects within the city model. <br><br> The 3D model of the MAB open air museum has been used to implement a Web-GIS allowing the citizen's participation, understanding and suggestions. The 3D city model is intended as a new tool for urban planning, therefore it has been used both for representing the current situation of the MAB and for design purposes, by acknowledging suggestions regarding a possible different location of the statues and a new way to enjoy the museum.


Sign in / Sign up

Export Citation Format

Share Document