scholarly journals Creating Open Online Applications with Geospatial Interfaces - Case Study "Palvelututka"

2021 ◽  
Vol 27 (2) ◽  
pp. 1-14
Author(s):  
Juho-Pekka Virtanen ◽  
Arttu Julin ◽  
Kaisa Jaalama ◽  
Hannu Hyyppä

Three-dimensional city models are an increasingly common data set maintained by many cities globally. At the same time, the focus of research has shifted from their production to their utilization in application development. We present the implementation of a demonstrator application combining the online visualization of a 3D city information model with the data from an application programming interface. By this, we aim to demonstrate the combined use of city APIs and 3D geospatial assets, promote their use for application development and show the performance of existing, openly available tools for 3D city model application development

Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. <br><br> The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


2020 ◽  
Vol 9 (8) ◽  
pp. 476 ◽  
Author(s):  
Dušan Jovanović ◽  
Stevan Milovanov ◽  
Igor Ruskovski ◽  
Miro Govedarica ◽  
Dubravka Sladić ◽  
...  

The Smart Cities data and applications need to replicate, as faithfully as possible, the state of the city and to simulate possible alternative futures. In order to do this, the modelling of the city should cover all aspects of the city that are relevant to the problems that require smart solutions. In this context, 2D and 3D spatial data play a key role, in particular 3D city models. One of the methods for collecting data that can be used for developing such 3D city models is Light Detection and Ranging (LiDAR), a technology that has provided opportunities to generate large-scale 3D city models at relatively low cost. The collected data is further processed to obtain fully developed photorealistic virtual 3D city models. The goal of this research is to develop virtual 3D city model based on airborne LiDAR surveying and to analyze its applicability toward Smart Cities applications. It this paper, we present workflow that goes from data collection by LiDAR, through extract, transform, load (ETL) transformations and data processing to developing 3D virtual city model and finally discuss its future potential usage scenarios in various fields of application such as modern ICT-based urban planning and 3D cadaster. The results are presented on the case study of campus area of the University of Novi Sad.


Author(s):  
M. Corongiu ◽  
G. Tucci ◽  
E. Santoro ◽  
O. Kourounioti

<p><strong>Abstract.</strong> A 3D city model is a representation of an urban environment with a three-dimensional geometry of common urban objects and structures, with buildings as the most prominent feature. In the last decades, 3D city models appear to have been predominantly used for visualisation; however, nowadays they are being increasingly employed in a number of domains and for a broad range of tasks beyond visualisation. The MUIF (Modello Unico dell’Infrastruttura Fisica) project, here illustrated as a case study, refers to the implementation of a single spatial model of the infrastructure of Italy’s railway system (RFI).</p><p> The authors describe preliminary results and the critical aspects of the study they are carrying out, explaining the processes and methodology to model all datasets into a single integrated spatial model as the reference base for future continuously updates. The case study refers to data collected by different sources and at various resolutions. An integrated spatial Database has been used for modelling topographic 3D objects, traditionally implemented in a 3D city model, as well as other specific 3D objects, related to the railway infrastructure that, usually, aren’t modelled in a 3D city model, following the same methodology as the first ones.</p>


2012 ◽  
Vol 174-177 ◽  
pp. 2490-2493 ◽  
Author(s):  
Chun Yu Pang ◽  
Qing Yin

One of the most important developments in GIS technology is the ability to extend two-dimensional analytical functionality into the third dimension. The approach of modeling objects for three-dimensional (3D) descriptions of the real world has been very useful for some urban applications such as planning, construction, management and representation of the urban sceneries. 3D city model is basically a computerized model or digital model of a city. Normally 3D city model delivers a true picture and real scene of the ground and enable the planners to view the locations of services and real places in an intuitive and use-friendly way. And there are many useful applications of 3D city model in urban planning analysis, noise propagation simulations and flood simulations. Nowadays, 3D city models play a more and more important role in GIS.


Author(s):  
P. Würstle ◽  
T. Santhanavanich ◽  
R. Padsala ◽  
V. Coors

Abstract. This paper explains the development of a 3D city model-based Public Participation Platform as a prototype and its implementation in a real-world public participation process to redevelop the Weilimdorf area of Stuttgart city. Alongside conducting Weilimdorf’s public participation process, the goal of the mentioned public participation platform is to research citizens’ acceptance of such tools. The usage of digital tools has become more critical for participation processes. The need for social distancing expedites this change, particularly during the pandemic. Previous research frequently focuses on 2D platforms and smaller sample sizes but nevertheless shows the importance of such tools. However, with current developments in geospatial and web streaming technologies, it has become easier and faster to visualize large-scale 3D city models over the web. In this research, these technologies were used by the citizens of the Weilimdorf area to evaluate the usability of the platform and collect their feedback. The result shows that such a digital public participation platform is a valuable supplement to traditional in-person public participation methods.


Author(s):  
Z. H. Mohd ◽  
U. Ujang ◽  
T. Liat Choon

Heritage house is part of the architectural heritage of Malaysia that highly valued. Many efforts by the Department of Heritage to preserve this heritage house such as monitoring the damage problems of heritage house. The damage problems of heritage house might be caused by wooden decay, roof leakage and exfoliation of wall. One of the initiatives for maintaining and documenting this heritage house is through Three-dimensional (3D) of technology. 3D city models are widely used now and much used by researchers for management and analysis. CityGML is a standard tool that usually used by researchers to exchange, storing and managing virtual 3D city models either geometric and semantic information. Moreover, it also represent multi-scale of 3D model in five level of details (LoDs) whereby each of level give a distinctive functions. The extension of CityGML was recently introduced and can be used for problems monitoring and the number of habitants of a house.


Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. <br><br> The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


Author(s):  
Thunyathep Santhanavanich ◽  
Volker Coors

Devices from the Internet of Things are being increasingly used in everyday life, and they provide a massive amount of data in various formats. While implementing the Smart Cities initiative, these data are integrated and utilized together with the 3D city model for further applications. Based on Open Geospatial Consortium standards, heterogeneous sensor data can be integrated with the Open Geospatial Consortium SensorThings Application Programming Interface. Similarly, the 3D city model data can be stored and exchanged with the Open Geospatial Consortium CityGML format. However, currently, there is no concrete model to integrate these sensor data with the 3D city model using the Open Geospatial Consortium standards. The existing solution for integrating the sensor data into the 3D city model requires an extension or plug-in for adding the data to the CityGML model. In this paper, we introduce the concept of “CityThings” to integrate dynamic sensor data from the Open Geospatial Consortium SensorThings API into the CityGML 3D city models. We demonstrate the implementation of the CityThings concept in the Smart Villages project in the study area of Wüstenrot, Germany, by integrating dynamic sensor data from several systems including solar panels, agro-thermal plants, and weather monitoring sensors to visualize the sensor data with the 3D city model on the web platform. In the future, this concept can be applied to interconnect dynamic sensor data and 3D city model data in other Smart Cities applications.


2021 ◽  
Vol 26 ◽  
pp. 643-656
Author(s):  
Amichai Mitelman ◽  
Ury Gurevich

The topic of Building Information Modelling (BIM) adoption by public organizations has become a central subject of research, and a significant amount of BIM documents, guidelines, and standards have been created to meet different organizational purposes. Compared to the building industry, the application of BIM tools for tunnel project management is lagging far behind. This paper proposes a methodology for integrating BIM tools for conventional tunnelling. A fundamental distinction is made between the tunnel internal architectural domain and the external structural domain. For the former, BIM methodology can be applied similarly to the building industry. For the latter, it is suggested that a BIM model be built according to the essential information generated during tunnelling excavation. The proposed methodology was put to test for an actual tunneling project. A routine was established where the supervisor on behalf of the owner was responsible for gathering and reporting essential data in tabular form. Via REVIT's Application Programming Interface (API), a code was developed so that a BIM model was built and updated automatic to data insertion. Ultimately, the final BIM model allows managing up-to-date qualitative and quantitative information visually. Thus, human understanding and interpretation are enhanced for future uses, such as maintenance, future renovations and project post-analysis.


2014 ◽  
Vol 3 (3) ◽  
pp. 35-49 ◽  
Author(s):  
Jan Klimke ◽  
Benjamin Hagedorn ◽  
Jürgen Döllner

Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. This paper introduces a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.


Sign in / Sign up

Export Citation Format

Share Document