Toughening Mechanism and the Application of Epoxy Adhesive Modified by Nano-SiO2

2012 ◽  
Vol 174-177 ◽  
pp. 834-837
Author(s):  
Xi Wang ◽  
S. R. Zheng ◽  
R. M. Wang

Epoxy resin adhesives are widely used in various sectors, particularly in the aerospace and automotive industries. However, the solidification of the three-dimensional network structure of pure epoxy resin, which causes greater density and brittleness, results in poor system resilience. With the ultimate goal of improving the resilience of epoxy resin, nano-sized SiO2particles were introduced to improve the adhesion strength of both modified and unmodified epoxy adhesive. The results indicated increases of shearing strength from 16.66-Mpa to 18.01 -Mpa, impact strength from 15.4-kJ/m2 to 33.68-kJ/m2, and flexural strength from 70.5-Mpa to 80.94 Mpa.

2010 ◽  
Vol 123-125 ◽  
pp. 1139-1142 ◽  
Author(s):  
Sawitri Srisuwan ◽  
Pranee Chumsamrong

In this study, the effects of weave type and fiber content on the physical properties of woven sisal fiber/epoxy composites were investigated. Sisal fibers used in this work were obtained from Nakhon Ratchasima, Thailand. Both untreated and alkali-treated fibers were employed. The woven sisal fibers were manufactured by hand weaving process. The fiber content in sisal fiber/epoxy composites were 3 wt.%, 5 wt.% and 10 wt.%. The composites were cured at room temperatures. In order to determine mechanical properties of the composites, flexural and impact tests were applied. Flexural strength and flexural modulus of all composites were higher than those of pure epoxy resin and tended to increase with increasing fiber content. The impact strength of all composites was lower than that of pure epoxy resin. The composites containing 10 wt.% sisal fibers showed the highest impact strength. There was no definite influence of weave type on flexural properties of the composites. At 3 and 5 wt.% fiber, the composites containing plain weave fibers seemed to show a higher impact strength than the composites containing other weave types.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3576
Author(s):  
Martyna Roszowska-Jarosz ◽  
Joanna Masiewicz ◽  
Marcin Kostrzewa ◽  
Wojciech Kucharczyk ◽  
Wojciech Żurowski ◽  
...  

The aim of our research was to investigate the effect of a small nanocellulose (NC) addition on an improvement of the mechanical properties of epoxy composites. A procedure of chemical extraction from pressed lignin was used to obtain nanocellulose fibers. The presence of nanoparticles in the cellulose pulp was confirmed by FTIR/ATR spectra as well as measurement of nanocellulose particle size using a Zetasizer analyzer. Epoxy composites with NC contents from 0.5% to 1.5% w/w were prepared. The obtained composites were subjected to strength tests, such as impact strength (IS) and resistance to three-point bending with a determination of critical stress intensity factor (Kc). The impact strength of nanocellulose composites doubled in comparison to the unmodified epoxy resin (EP 0). Moreover, Kc was increased by approximately 50% and 70% for the 1.5 and 0.5% w/w NC, respectively. The maximum value of stress at break was achieved at 1% NC concentration in EP and it was 15% higher than that for unmodified epoxy resin. The highest value of destruction energy was characterized by the composition with 0.5% NC and corresponds to the increase of 102% in comparison with EP 0. Based on the analysis of the results it was noted that satisfactory improvement of the mechanical properties of the composite was achieved with a very small addition of nanofiller while other research indicates the need to add much more nanocellulose. It is also expected that this kind of use of raw materials will allow increasing the economic efficiency of the nanocomposite preparation process. Moreover, nanocomposites obtained in this way can be applied as elements of machines or as a modified epoxy matrix for sandwich composites, enabling production of the structure material with reduced weight but improved mechanical properties.


2014 ◽  
Vol 496-500 ◽  
pp. 71-74 ◽  
Author(s):  
Jian Ping Zhou ◽  
Hui Ru Wu ◽  
Wan Li Fu ◽  
Shi Jun Jia

Reactive block copolymer SEBSMB was used as modifier to toughen epoxy resin. The results indicate that ideal enhancement of toughness could be achieved by this method. The impact strength increases with increase of the content of SEBSMB in the matrix and it could be enhanced by 200% at 20wt% addition of the modifier. DMA and TG results show that the modified resin exhibits similar thermal stability as compared with pure epoxy resin. The toughening effect may be ascribed to the unique self-assembling structure of SEBSMB in the matrix and a hypothetical model was proposed.


2011 ◽  
Vol 30 (11) ◽  
pp. 912-921 ◽  
Author(s):  
Ai Du ◽  
Bin Zhou ◽  
Yunong Li ◽  
Xiuyan Li ◽  
Junjian Ye ◽  
...  

Considering its special microstructure and unique properties, silica aerogel was chosen as three-dimensional (3D) nanoporous filler for epoxy resin in this paper. Pure epoxy resin (0 wt%), 0.1 wt%, 1 wt%, 5 wt%, 10 wt%, and 100 wt% (pure silica aerogel) aerogel/epoxy composites were fabricated and then characterized by dynamic mechanical analyzer (DMA) and field emission scanning electron microscope. The results showed that small amount of filler efficiently increased the stiffness of the composites, but the stiffness decreased with the increase of the mass fraction of the aerogel in the composites (composites ratio); the glass transition temperature of the composites substantially increased, compared to pure epoxy resin. Also, the compressive modulus of the composites at glassy state, rubbery state, and hardening state were studied, respectively. At last, the effects which presumably affect the properties of aerogel/epoxy composites were discussed. Anchoring effect and interfacial effect were suggested to explain the thermal—mechanical behaviors of the composites with different composite ratio.


2020 ◽  
Vol 10 (2) ◽  
pp. 133-148
Author(s):  
Ankaj Kaundal ◽  
Pravin Kumar ◽  
Rajendra Awasthi ◽  
Giriraj T. Kulkarni

Aim: The study was aimed to develop mucoadhesive buccal tablets using Aster ericoides leaves mucilage. Background : Mucilages are naturally occurring high-molecular-weight polyuronides, which have been extensively studied for their application in different pharmaceutical dosage forms. Objective: The objective of the present research was to establish the mucilage isolated from the leaves of Aster ericoides as an excipient for the formulation of the mucoadhesive buccal tablet. Method: The mucilage was isolated from the leaves of Aster ericoides by maceration, precipitated with acetone and characterized. Tablets were prepared using wet granulation technique and evaluated for various official tests. Results: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Conclusion: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Other: However, to prove the potency of the polymer, in vivo bioavailability studies in human volunteers are needed along with chronic toxicity studies in suitable animal models.


2014 ◽  
Vol 70 (9) ◽  
pp. i46-i46 ◽  
Author(s):  
Matthias Weil ◽  
Thomas Häusler

The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium trithiocyanatomercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952).Zh. Fiz. Khim.26, 469–478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg—S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg2+cation is surrounded by four S atoms in a seesaw shape [S—Hg—S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting1∞[HgS2/1S2/2] chains are also part of SCN−anions that link these chains with the K+cations into a three-dimensional network. The K—N bond lengths of the distorted KN7polyhedra lie between 2.926 (2) and 3.051 (3) Å.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1841
Author(s):  
Kang Li ◽  
Xuejie Zhang ◽  
Yan Qin ◽  
Ying Li

Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


Sign in / Sign up

Export Citation Format

Share Document