Roadway Supporting Technology in Fully Mechanized Workface with Large Mining Height of Specially Thick Coal Seam in Datong Mining Area

2012 ◽  
Vol 204-208 ◽  
pp. 1611-1616 ◽  
Author(s):  
Guo Liang Lu ◽  
Chen Wang ◽  
Yao Dong Jiang ◽  
Hong Wei Wang

Aimed at the supporting problems in the fully mechanized roadway with large mining height of the specially thick coal seam in workface 8105 in Tashan coal mine, the “three highs with one low” supporting technology of high strength, high stiffness, high reliability and low support density was adopted to solve the roadway supporting problems of specially high coal side and specially large section and effectively control the surrounding rock deformation and ensure the roadway safety. It also increased the roadway excavation speed which made good conditions for fast advance of the fully mechanized workface, and it made the soft-rock roadway supporting technology in Datong mine area develop into a new level.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kai Wang ◽  
Tong Zhao ◽  
Kaan Yetilmezsoy ◽  
Xiaoqiang Zhang

Serious rib spalling and low recovery rate problems caused by the poor top-coal caving property (TCCP) were investigated in fully mechanized caving mining with large mining height (FMCMLMH) of extremely thick coal seam. For this aim, theoretical calculation, numerical simulation, and engineering application were applied to study the reasonable cutting-caving ratio under the influence of different factors. The calculation formula of reasonable cutting height in FMCMLMH was obtained, and effective factors were determined. Moreover, Ft (the top-coal yield failure coefficient) and Fw (the coal wall yield failure coefficient) were defined, and each factor was fitted by using a linear regression equation. The minimum Ft of fully fractured top coal was 0.6, and the main influencing factors were buried depth and Protodyakonov coefficient. The maximum Fw of the stable coal wall was 1.5, and the main influencing factors were buried depth and cutting height. According to the relationship between coal wall stability and recovery rate, the relationship between coal seam strength and top-coal thickness at different cutting heights was obtained, and the mining zone was divided into four subzones. Engineering application showed that the optimal cutting height of Xiegou Coal Mine was 4 m, the cutting-caving ratio was 1 : 2.75, and the recovery rate could reach more than 85%, which was the most reasonable.


2012 ◽  
Vol 450-451 ◽  
pp. 1318-1322 ◽  
Author(s):  
Ping Wei Xing ◽  
Xuan Min Song ◽  
Yu Ping Fu

Based on the condition of No.1-2 coal seam of Shang Wan Coal Mine Shendong mining area, the movement of the overlying strata of the 7.0m large mining height workface have been studied by similar simulation test, which geometric similarity ratio is 1:50.The results show that: the immediate roof strata caves stratified to loose blocks, and the goaf can’t be filled with these loose blocks; the basic roof strata caves stratified too, the lower slice caves to loose blocks, it evolves into the immediate roof and widen the immediate roof; there is the periodic weighting phenomenon of size alternating in the large mining height workface of No.1-2 coal seam ; the immediate roof and the basic roof and the overlying strata of basic roof have different characteristics of caving; the large mining height workface has a greater sphere of supporting pressure than the traditional small height workface, the peak supporting pressure of the large mining height workface is more depth to the coalwall than the average mining height workface, and this led to workface roof strata fracture further ahead.


2012 ◽  
Vol 524-527 ◽  
pp. 598-603
Author(s):  
Nian Jie Ma ◽  
Zhi Qiang Zhao ◽  
Hua Zhao ◽  
Li Shuai Jiang

In order to solve the serious damage and repeat revision problem of high stress soft rock roadway in deep -950 level of Tangshan coal mine, based on the theory of the maximum stress level, together with the actual measurement of geostress and the laboratory mechanical parameters of rock-core and computer numerical simulation, the high strength combined support technology and supporting parameters are determined and the engineering test has been done. The engineering test results show that the parameter determination of high strength combined support technology, which based on the actual measurement of geostress, can effective solve the support issue of high stress soft rock roadway and provide useful experience for similar engineering problems.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Ju ◽  
Meng Xiao ◽  
Zequan He ◽  
Pai Ning ◽  
Peng Huang

Ultra-thick hard sandstone roofs present high thickness, poor delamination, and wide caving range. The strata pressure of the working face during actual mining increases, having a significant influence on the safe mining of the working face. Especially, in the mining areas of western China, the fully mechanized mining faces with high mining height and high-strength mining are more prominent. Understanding the fractures and stress evolution characteristics of the ultra-thick hard sandstone roof during actual mining is of high significance to control the dynamic pressure on the working face. In this paper, the typical ultra-thick hard sandstone roof of the Xiaojihan coal mine was taken as an example. The structural and chemical composition characteristics were analyzed. Besides, the fracture characteristics of ultra-thick hard roof during the working face mining were analyzed. Moreover, the fracture structure consistency was verified through physical simulation and a field measurement method. Finally, the stress evolution laws in the ultra-thick hard sandstone roof fracture were studied through numerical simulation. The findings demonstrated that (1) the ultra-thick hard sandstone roof was composed of inlaid coarse minerals, which had compact structure, while the Protodyakonov hardness reached up to 3.07; (2) under the high-strength mining condition of fully mechanized mining face with large mining height, the ultra-thick hard sandstone roof had the characteristics of brittle fracture, with a caving span of 12 m; (3) under the high-strength mining condition of fully mechanized mining face with large mining height, the ultra-thick hard sandstone roof followed the stress evolution laws that were more sensitive to the neighboring goaf. Therefore, it was necessary to reduce the fracture span or layering of ultra-thick hard sandstone roof through the manual intervention method adoption or increase either the strength of coal pillar or supporting body, to resist the impact generated during ultra-thick hard sandstone roof fracture.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Liang Chen ◽  
Shaowu Fan ◽  
Can Zhao ◽  
Lang Zhang ◽  
Zhiheng Cheng

Under the geological condition of soft and hard rock interaction stratum, the overburden damage height can provide a quantitative support for the design of the locations of gas drainage boreholes in the roof mining fracture zone and the determination of the hydraulic fracture zone in coal seam mining. The interbedded structure of overlying mud rock and sandstone in the Lu’an mining area in Shanxi is a typical soft and hard rock interaction stratum. In view of the lack of soft rock fracture mechanics analysis and the improper calculation of the damage height of overburden rock caused by constant rock residual bulking coefficient to be used regularly in the analysis, in this paper, we constructed a fracture model of soft and hard strata by giving a quantitative classification criterion of soft and hard rocks and introducing a fracture failure criterion of soft rock strata and the space constraint condition of broken-expansion rock formation. Aiming at improving the calculation precision of overburden damage height, we presented a calculation method based on fracture mechanics analysis of soft and hard strata, which could delineate the extent of intact rock in overlying strata from bottom to top to determine the damage height of overburden rock. This research took Yuwu coal mine in Lu’an mining area as an example. Results showed that (1) by the calculation method, the overburden damage height of the N1102 fully mechanized caving face in Yuwu coal mine was 51.44 m, which was less than the value obtained by an actual borehole TV method as well as the numerical simulation result of 53.46 m, with a calculation accuracy about 96.22%, which is quite high for both. The calculation accuracy of the proposed method was higher than that of the three conventional theoretical methods, and it effectively solved the limitation of the fracture analysis method without the inclusion of the soft rock layer in design and the distortion problem due to the residual bulking coefficient to be improperly used in simulation. (2) There was no noticeable fractures in the broken soft rock zone, and the whole fractures were mainly low-angle rupture; the fractures in hard rock layer had obvious ruptures and multiangle cracks, and the average fracture width of soft rock was 2.8 mm smaller than that of hard rock. The fracture modes of soft rock and hard rock were mainly tensile failure and tensile shear failure, which verified the correctness of the fracture mechanics model of soft and hard rock layers constructed in this paper. (3) It is noticed that the tensile strength of rock in this method needs to be obtained through rock mechanics experiment on overlying strata in the study area, and our proposed method was applicable to the mining conditions of near horizontal coal seam. The calculation accuracy of this method meets the engineering error requirements and can be applied to the prediction of overburden damage height in near horizontal coal seam mining.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhenhua Li ◽  
Yingkun Pang ◽  
Yongsheng Bao ◽  
Zhanyuan Ma

In the process of high-intensity and large-space mining in Shendong mining area, various surface cracks are generated on the surface, resulting in serious damage to the surface buildings and the local ecological environment. To study the influence of overlying rock movement on surface failure of near-field single key strata of near-shallow buried and large mining height working face, the relationship between overburden movement, strata pressure appearance, and surface failure at working face 52307 in Daliuta mining area was analyzed by field measurement and numerical simulation. The results show the following: (1) there is only one thick and hard key stratum in the overburden of large mining height and near-shallow buried working face. Under the condition of presplitting roof blasting, the first weighting step is still as high as 95 m, and the periodic breaking step of roof is 20–30 m. During the weighting, the working resistance of support is still close to the rated resistance. (2) The single key stratum plays an obvious role in controlling overburden movement. After the first weighting of the working face, a stepped subsidence crack appears on the surface within a short time, and the crack lags behind the working face for about 5 m. (3) During each periodic weighting process, the breaking and subsidence of key blocks are accompanied by surface cracks.


2015 ◽  
Vol 743 ◽  
pp. 612-616 ◽  
Author(s):  
J.H. Yu ◽  
De Bing Mao

Based on the feature of large thickness and poor drawing characteristics in extremely thick coal seam top-coal caving method, combined with numerous practical examples analyses, the primarily six factors influence the drawing characteristics were found out which are mining depth, coal seam strength, joint crack development, parting thickness in top-coal, caving ratios, immediate roof filling coefficient. According to 45 typical top-coal caving in extremely thick coal seam samples, the prediction of top-coal caving and drawing characteristics based on artificial neural networks was established and training samples and testing samples was determined. Use SPSS statistical software training the network model. Then select No. 9 coal seam first mining area of Tiaohu mine as the application case. The drawing property was forecast according to the established network model. Application results show that the use of artificial neural networks for top-coal caving and drawing characteristic prediction is effective and feasible.


2011 ◽  
Vol 347-353 ◽  
pp. 183-188 ◽  
Author(s):  
Ping Wei Xing ◽  
Xuan Min Song ◽  
Yu Ping Fu

Based on the high mining height of large cutting height workface in shallow thick coal seam and the few falling waste rock in goaf, the key roof can not be supported effectively, the facture mechanical model of key roof was established. The theoretical calculation formula of key stratum fracture step and working resistance of support were obtained by using fracture mechanics. The results show that the fracture step of key roof relate to not only the mechanical character of key roof and the load of overlaying rock seam, but also the working resistance of support and horizontal pressure in key roof. The reasonable working resistance of support and the step of roof fracture were analyzed in 1-2coalmine 51104 face of a mine in Dongsheng area. The theoretical results are well agreeable with the field measured results.


Sign in / Sign up

Export Citation Format

Share Document