Effect of Admixed Recycled Aggregate on Properties of Recycled Concrete

2012 ◽  
Vol 174-177 ◽  
pp. 743-746
Author(s):  
Ya Jun Zhao ◽  
Ying Gao ◽  
Li Li He

The mixture proportion of recycled concrete was discussed by orthogonal design method. The influence of water-cement ratio, recycled aggregate quantity on workability, cube compressive strength of recycled concrete was analyzed. The experimental results indicated that,Recycled concrete mix proportion design should consider the impact of the water absorption of recycled aggregate. Unit water amount of recycled concrete should be plain concrete unit water consumption and recycled aggregate additional amount of water. Sand ratio should increase in the corresponding ordinary aggregate concrete sand ratio on the basis of 1 to 3 percent. When the water-cement ratio is 0.36 and construction waste content of 40% slag content of 20%, 28d compressive strength of concrete is 48.1MPa, slightly higher than the reference concrete (48.0MPa).

2021 ◽  
pp. 136943322199248
Author(s):  
Tao Meng ◽  
Song-lin Yu ◽  
Huadong Wei ◽  
Sheng Zhu

Recycled concrete has been widely used in construction because of the gradual shortage of natural aggregate resources and the large amount of construction waste. In this study, concrete with 100% recycled aggregate was prepared, and its properties, microtopography, and potential enhancement method were investigated. The results indicated that the mechanical properties of the fully recycled aggregate concrete (FRC) were significantly inferior to the natural aggregate concrete. The compressive strength of the FRC with a water-cement ratio of 0.6 was noticeably improved by spraying a nanocomposite slurry on recycled aggregate, whereas this had little influence when the water-cement ratio was 0.3. The compressive strength of the FRC with a water-cement ratio of 0.3 could be improved by mixing with strengthening materials. The best improvement in the compressive strength of the concrete was observed at 28 days because a membrane covered the surface of the aggregate, creating a bond between the aggregate and cement, filling the pores between them, and compacting the concrete. This paper reports a prospective method for improving the properties of FRC, which will promote the application of recycled aggregate in industry.


2013 ◽  
Vol 648 ◽  
pp. 108-111
Author(s):  
Qi Jin Li ◽  
Guo Zhong Li

The construction waste was processed into recycled aggregate to produce solid construction waste brick with grade of MU20. The preparation process of recycled aggregate and the optimal value of mass ratio of water to cement (water cement ratio) and mass ratio of recycled aggregate to cement was studied. The results shows that when the water cement ratio is 0.86 and the mass ratio of recycled aggregate to cement is 5.5 and the dosage of activator is 0.25% (mass fraction with recycled aggregate), the compressive strength of sample is 22.5MPa and can be satisfied with the requirement of MU20 solid concrete brick.


2013 ◽  
Vol 850-851 ◽  
pp. 847-850 ◽  
Author(s):  
Lin Chao Dai

In order to study the coal and gas outburst similar simulation experiment, coal similar material was made up based on the similarity theory. Based on the previous similar material study, the cement, sand, water, activated carbon and coal powder was selected as the raw material of similar material. Meanwhile similar material matching program with 5 factors and 6 levels was designed by using Uniform Design Method. And the physical and mechanical properties of the similar material compressive strength was measured under different proportions circumstances. The relationship between similar material and the raw materials was analyzed. The results show that choosing different materials can compound different similar materials with different requirements. And the water-cement ratio plays a decisive influence on the compressive strength of similar material. The compressive strength of similar material decreases linearly when the water-cement ratio increases.


2013 ◽  
Vol 448-453 ◽  
pp. 1316-1320
Author(s):  
Hai Chao Wang ◽  
Ke Qiu ◽  
Shu Ling Gao

Using orthogonal design method of four factors and three levels, make a mix ratio experiment on sleeper concrete of China's railway sleepers, used steam curing concrete early compressive strength (stripping strength) as evaluation index. Study on different experimental factors of water-cement ratio, sand ratio, fly ash and admixture differently influenced on the early strength of sleeper concrete and analyze the difference impact of each factor and level for the orthogonal experiment. The result shows that the admixture is the main factor for early strength of concrete, followed by fly ash, water-cement ratio and sand ratio. It can provide technical guidance for railway sleeper field and has practical value.


2013 ◽  
Vol 771 ◽  
pp. 29-33
Author(s):  
Jin Xi Zhang ◽  
Chao Wang ◽  
Ming Yang Guo ◽  
Mao Cheng Ma

This paper studies the effect of water-cement ratio [w/ on the air-void parameters of cement concrete, which has a significant influence on the durability of concrete. Based on the experimental investigation, it is found that the impact on the air content of hardened concrete due to different water-cement ratio is not great. Test results also indicate that with the increase of water-cement ratio, the spacing factors also experienced a marked rise, and the mean diameters as well as the specific areas of air voids evidently increased or declined, respectively, which may lead to an adverse effect on the frost resistance of concrete.


2012 ◽  
Vol 204-208 ◽  
pp. 3895-3898 ◽  
Author(s):  
Zhen Min Cao ◽  
Zhi Gang He ◽  
Yi Yang

Shale ceramsite concrete is a kind of light weight aggregate concrete. In this paper shale ceramsite concrete compressive strength properties are studied by experimental preparation of different water cement ratio, and made an analysis of compressive strength comparatively among 7 days, 28 days, 56 days. The result shows that the rules of compressive strength of shale ceramsite concrete are in line with the general law strength of concrete, and increases with the age increasing, decreases with water cement ratio increasing, but they are not entirely linear relationship.


2021 ◽  
Vol 9 (3) ◽  
pp. 81-87
Author(s):  
A. Abdelrahman Abuserriya ◽  
B. Bashir H. Osman ◽  
C. Salma Y. Mahmoud

Construction is a serious environmental problem and a challenge for people who concerned with sustainability in the construction field. Previous studies showed positive results for the use of recycled aggregates in the concrete production. This study portrays the results for utilizing construction debris for casting different types of concrete blocks. The recycled concrete debris was used in different ratios (0%, 50%, and 100%) in replacement for natural coarse aggregates for different targeted compressive strength (B250, B300, B350 and B400). Two types of water (pure and sea water) were used for curing the blocks. In addition, hollow block and paving block were casted with different ratios of recycled aggregate (0%, 20%, 45% and 100%) and cured with two types of water. The results showed a decrease in compressive strength with the increase recycled aggregate content. It was also noticed that the absorption capacity increases with high recycled aggregate content.  


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4583
Author(s):  
Martyna Nieświec ◽  
Łukasz Sadowski

Recently, the surfaces of concrete structures are impregnated to protect them against the environment in order to increase their durability. It is still not known how the use of these agents affects the near-surface hardness of concrete. This is especially important for experts who use the near-surface hardness of concrete for estimating its compressive strength. The impregnation agents are colorless and, thus, without knowledge of their use, mistakes can be made when testing the surface hardness of concrete. This paper presents the results of investigations concerning the impact of impregnation on the subsurface hardness concrete measured using a Schmidt hammer. For this research, samples of cement paste with a water–cement ratio of 0.4 and 0.5 were used. The samples were impregnated with one, two, and three layers of two different agents. The first agent has been made based on silanes and siloxanes and the second agent has been made based on based on polymers. The obtained research results allow for the conclusion that impregnation affects the near-surface hardness of concrete. This research highlights the fact that a lack of knowledge about the applied impregnation of concrete when testing its near-surface hardness, which is then translated into its compressive strength, can lead to serious mistakes.


Sign in / Sign up

Export Citation Format

Share Document