Numerical Simulation of Expansion Effect of MgO Concrete

2012 ◽  
Vol 212-213 ◽  
pp. 801-804 ◽  
Author(s):  
Jian Hua Cui ◽  
Han Jiang Xiao ◽  
Jie Su

The expansion effect of the MgO concrete must meet the requirement of the design for the temperature control. In this paper, its influence to the construction stress is studied using 3D FEM method. Results show that the expansion of MgO at later age is good for compensating the shrinkage induced by temperature drop and the expansion of MgO can improve the stress status in the constrained zones but may worsen the stress status in other zones. This provides the reference for popularizing dam construction technology with MgO concrete.

2012 ◽  
Vol 226-228 ◽  
pp. 1153-1156 ◽  
Author(s):  
Shu Ping Huang ◽  
Jian Yun Fu ◽  
Yan Cai Li

With the continuous development of dam construction technology, the RCC dam becomes one of the most popular types of dam in the world with its unique advantages. Temperature control measures research is one of the key issues of design and construction of mass concrete structures. How to choose the proper temperature control measures to prevent concrete cracks becomes the important problem of dam construction technology. In a RCC gravity dam, the climate environment is so severe that a single temperature control measure can’t meet the requirements of temperature control and crack prevention. In this paper, 3D FEM simulation analysis is used to calculate temperature field and thermal creep stress field during the whole construction process. According to the simulation results, the temperature control measures design of the dam has been comprehensively evaluated and the temperature control measures of this project have been put forward.


2008 ◽  
Vol 33-37 ◽  
pp. 1377-1382 ◽  
Author(s):  
Halida Musha ◽  
Mamtimin Gheni ◽  
Buhalqam

In this paper, the iBone (Imitation Bone) model which is coupled with Turing reaction-diffusion system and FEM, is used. The numerical simulation of bone forming process by considering the osteoclasts and osteoblasts process are conducted. The bone mass is increased with increase of the initial load value, then fibula and femur bones are obtained respectively by keeping the required bone forming value. The new S shape wave of metal welded bellow of mechanical seal are designed based on the the optimization results through this method. The S shape and V shape both were analyzed with FEM method. The same boundary conditions were given for two types of wave. The results are shown that the stresses mainly concentrated on the welded area. It is interesting that the value of the stresses of the two types of wave basically same. However, compressibility of the two types of wave is very different at the same computation stage. The compressibility of S shape wave was higher than V shape.


2007 ◽  
Vol 17 (3) ◽  
pp. 443-448 ◽  
Author(s):  
Dong-dong YOU ◽  
Ming SHAO ◽  
Yuan-yuan LI ◽  
Zhao-yao ZHOU

2021 ◽  
Author(s):  
Peifeng Yu ◽  
Chengui Zhang ◽  
Zezhan Zhang ◽  
Yang Yang ◽  
Yi Niu ◽  
...  

Author(s):  
Yang Zhang ◽  
Tomasz Duda ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
Colin D. Copeland ◽  
...  

This paper is part of a two-part publication that aims to design, simulate and test an internally air cooled radial turbine. To achieve this, the additive manufacturing process, Selective Laser Melting (SLM), was utilized to allow internal cooling passages within the blades and hub. This is, to the authors’ knowledge, the first publication in the open literature to demonstrate an SLM manufactured, cooled concept applied to a small radial turbine. In this paper, the internally cooled radial turbine was investigated using a Conjugate Heat Transfer (CHT) numerical simulation. Topology Optimisation was also implemented to understand the areas of the wheel that could be used safely for cooling. In addition, the aerodynamic loss and efficiency of the design was compared to a baseline non-cooled wheel. The experimental work is detailed in Part 2 of this two-part publication. Given that the aim was to test the rotor under representative operating conditions, the material properties were provided by the SLM technology collaborator. The boundary conditions for the numerical simulation were derived from the experimental testing where the inlet temperature was set to 1023 K. A polyhedral unstructured mesh made the meshing of internal coolant plenums including the detailed supporting structures possible. The simulation demonstrated that the highest temperature at the blade leading edge was 117 K lower than the uncooled turbine. The coolant mass flow required by turbine was 2.5% of the mainstream flow to achieve this temperature drop. The inertia of the turbine was also reduced by 20% due to the removal of mass required for the internal coolant plenums. The fluid fields in both the coolant channels and downstream of the cooled rotor were analyzed to determine the aerodynamic influence on the temperature distribution. Furthermore, the solid stress distribution inside the rotor was analyzed using Finite Element Analysis (FEA) coupled with the CFD results.


2013 ◽  
Vol 353-356 ◽  
pp. 2531-2536
Author(s):  
Xiu Guang Song ◽  
Zhi Dong Zhou ◽  
Hong Bo Zhang ◽  
Hong Ya Yue

In order to solve the problem of differential settlement, seepage flow and stability between the new and old dam boundary in capacity increasing of the plain reservoirs, the comparative analysis on the stability of the dam slope with different methods on dealing with the new and old dam boundary was performed by numerical simulation with FLAC3D. The result shows that combining the new and old dam by using geogrid indicates superiority for reducing differential settlement, improving the dam stability and safety, etc. In the meantime, on the basis of actual site investigation and theoretical analysis, combined with the requirements of design, construction and management in capacity increasing of the plain reservoirs, the key construction technology was put forward and widely applied foreground, which can improve the quality of the construction, reduce engineering disease and provide references for capacity increasing engineering of in plain reservoirs.


Sign in / Sign up

Export Citation Format

Share Document