Preparation of Nickel/Poly(m-Toluidine) Composites and its Magnetic Properties

2012 ◽  
Vol 217-219 ◽  
pp. 142-145
Author(s):  
Hong Wang ◽  
Yong Zhong Jin ◽  
Tao Wang ◽  
Di Liu ◽  
Xue Fei Li

Ni/poly(m-toluidine)(PMT) nanocomposites were prepared by in situ chemical oxidative polymerization of m-toluidine (MT) monomer in the presence of Ni powder, with ammonium persulfate (APS) as oxidant and citric acid (C6H8O7) as dopant. The resultant products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and superconducting quantum interference device magnetometer (SQUID). The results exhibited that Ni/PMT nanocomposites show a ferromagnetic behavior with saturation magnetization strength (Ms) and coercivity of 28.4emu/g and 105.8Oe at room temperature. The prepared Ni/PMT composites were soft and ferromagnetic materials. Moreover, thermal Stability of nanocomposites was also investigated.

2012 ◽  
Vol 627 ◽  
pp. 638-641
Author(s):  
Hong Wang ◽  
Xue Fei Li ◽  
Chang Sheng Luo

Ni/poly(aniline-co-m-toluidine) nanocomposites were synthesized by in situ chemical oxidative polymerization of aniline with m-toluidine monomer in the presence of Ni powder, with ammonium persulfate (APS) as oxidant and citric acid (C6H8O7) as dopant. The structural, morphological and magnetic properties of these composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and superconducting quantum interference device magnetometer (SQUID). The results indicated that there is no chemical interaction between Ni powder and protonated copolymer, and Ni/poly(aniline-co-m-toluidine) nanocomposites displayed a ferromagnetic behavior with saturation magnetization strength and coercivity of 28.4emu/g and 105.8Oe at room temperature. The prepared composites were soft and ferromagnetic materials.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2018 ◽  
Vol 32 (8) ◽  
pp. 1078-1091 ◽  
Author(s):  
Sibel Erol Dağ ◽  
Pınar Acar Bozkurt ◽  
Fatma Eroğlu ◽  
Meltem Çelik

A series of polystyrene (PS)/unmodified Na-montmorillonite (Na-MMT) composites were prepared via in situ radical polymerization. The prepared composites were characterized using various techniques. The presence of various functional groups in the unmodified Na-MMT and PS/unmodified Na-MMT composite was confirmed by Fourier transform infrared spectroscopy. Morphology and particle size of prepared composites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to the XRD and TEM results, the interlayer spacing of MMT layers was expanded. SEM images showed a spongy and porous-shaped morphology of composites. TEM revealed the Na-MMT intercalated in PS matrix. The thermal stability of PS/unmodified Na-MMT composites was significantly improved as compared to PS, which is confirmed using thermogravimetric analysis (TGA). The TGA curves indicated that the decomposition temperature of composites is higher at 24–51°C depending on the composition of the mixture than that of pure PS. The differential scanning calorimetry (DSC) results showed that the glass transition temperature of composites was higher as compared to PS. The moisture retention, water uptake, Brunauer–Emmett–Teller specific surface area, and specific pore volume of composites were also investigated. Water resistance of the composites can be greatly improved.


2014 ◽  
Vol 934 ◽  
pp. 71-74
Author(s):  
Lian Mao Hang ◽  
Zhao Ji Zhang ◽  
Zhi Yong Zhang

Ni-doped rod-like ZnO particles with doping concentration of 1 at.% were synthesized at 200°C by hydrothermal method and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and superconducting quantum interference device (SQUID). The results show that the as-synthesized samples are pure hexagonal wurtzite structure without metallic Ni or other secondary phases and display rod-like shape with smooth surface. The magnetization measurements reveal that the Ni-doped rod-like ZnO particles show ferromagnetic behavior at room temperature. The saturation magnetization and coercive field are 0.0046 emu/g and 15 Oe, respectively.


2014 ◽  
Vol 915-916 ◽  
pp. 780-783
Author(s):  
Hong Wang ◽  
Ming Tian Li ◽  
Yue Lu ◽  
Di Liu

Pyrrole and m-toluidine copolymer (P(PY/MT)) / montmorillonite (MMT) Composites were prepared by in situ chemical polymerization of pyrrole with m-toluidine monomer in the presence of montmorillonite. The structural, morphological and thermal properties of these composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). X-ray diffraction result for P(PY/MT)-MMT illuminated the intercalation of P(PY/MT) copolymer between the clay layers. The FT-IR result showed the successful incorporation of montmorillonite clay in the prepared P(PY/MT)/MMT composite. The higher thermal stability of high MMT content rate might be attributed to its higher chain compactness due to the interfacial interaction between the P(PY/MT) and the clay.


2011 ◽  
Vol 194-196 ◽  
pp. 625-628
Author(s):  
Hong Wang ◽  
Min Gong ◽  
Jing Yu Zhang

Coral-like α-Fe2O3nanostructures modified by surfactant CTAB have been successfully obtained via a solvothermal process by using FeCl36H2O and oxalic acid as the starting materials. The coral-like α-Fe2O3nanostructures with good-crystalline consist of well-aligned α-Fe2O3nanoflakes with an average thickness of about 40 nm growing radially from the center of the nanostructures. The obtained products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), superconducting quantum interference device magnetometer (SQUID). Magnetic hysteresis measurements indicate that coral-like α-Fe2O3superstructures show a normal ferromagnetic behavior with the remanence and coercivity of 0.2346emu/g and 1862Oe at room temperature. CTAB, the reaction temperature and solvent played an important role in controlling the final morphology of the products.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Limei Wang ◽  
Aihua He

Polypropylene (PP)/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR) spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that theαphase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA) examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC) scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.


2014 ◽  
Vol 941-944 ◽  
pp. 334-337
Author(s):  
Hong Wang ◽  
Rui Song Yang ◽  
Ying Wang

Poly (m-toluidine)(PMT) / montmorillonite (MMT) Composites with thermal stability were synthesized by in situ chemical polymerization of m-toluidine monomer in the presence of montmorillonite. The PMT /MMT composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The FT-IR result displayed the successful incorporation of montmorillonite clay in the prepared PMT/MMT composite. X-ray diffraction result for PMT/MMT showed the intercalation of PMT between the clay layers. The higher thermal stability of high MMT content rate might be attributed to its higher chain compactness due to the interfacial interaction between the PMT and the .MMT.


2021 ◽  
pp. 004051752110519
Author(s):  
Yi Wang ◽  
Yuanjun Liu ◽  
Xiaoming Zhao

Firstly, a polyaniline/pre-oxidized fiber felt composite was prepared by in situ polymerization using pre-oxidized fiber felt as the substrate, aniline as the monomer, ammonium persulfate as the oxidant, and p-toluenesulfonic acid as the dopant. Secondly, the electromagnetic wave absorbing property and tensile property of the polyaniline/pre-oxidized fiber felt composite were investigated. Finally, the structure and composition were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and differential scanning calorimetry. The results show that the reflection loss of the polyaniline/pre-oxidized fiber felt composite is the smallest at the 3000 MHz frequency, reaching –8.23 dB, and the average surface resistance is 2059.84 Ω, with good conductivity. The characterization analysis shows that polyaniline has been successfully loaded on the pre-oxidized fiber felt, and the protonation reaction occurs at the nitrogen atom on the imine -N-. The polyaniline structure is doped by p-toluenesulfonic acid with a certain degree of order and crystallinity, and the composite has good thermal stability.


2014 ◽  
Vol 34 (5) ◽  
pp. 415-429 ◽  
Author(s):  
Rozina Ashraf ◽  
Ayesha Kausar ◽  
Muhammad Siddiq

Abstract Compared to conventional materials, nanocomposites of conjugated polymers are found to have excellent performance due to a larger exposed surface area. In this study, polyaniline (PANi), polypyrrole (PPy), polythiophene (PTh) and polyazopyridine (PAP)/nanodiamonds (NDs) composites were efficiently synthesized by in situ oxidative polymerization. Physical characteristics of fabricated nanocomposites were explored using Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) spectroscopy, field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). FTIR indicated layer-by-layer oxidative polymerization of various matrices on functional ND (F-ND) surfaces. FESEM revealed the fibrillar (web-like) morphology of multilayered nanocomposites having a granular arrangement of NDs. TGA of multilayered F-NDs/PAP/PANi/PTh showed 10% degradation at an enhanced temperature of 482°C compared with F-NDs/PANi/PPy/PTh (471°C). Improvement in glass transition of layered material was observed from 99°C (NDs/PANi/PPy/PTh) to 121°C (NDs/PAP/PANi/PTh). Functional filler also contributed towards the enhancement in the conductivity of NDs/PAP/PANi/PTh (5.7 S cm-1) relative to NDs/PANi/PPy/PTh (3.7 S cm-1) systems. New conducting composites are potentially important in various applications, including polymer lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document