The Calculation of Landslide-Thrust Based on Reliability Theory

2012 ◽  
Vol 226-228 ◽  
pp. 1293-1296 ◽  
Author(s):  
Ying Xiang Wu ◽  
Dong Sheng Liu ◽  
Lei Wang ◽  
Qian Xin

For current engineering of anti-slide piles, many problems exist in the calculation of landslide-thrust. Therefore, a new method based on the reliability theory combined with strength reduction FEM is introduced, and the landslide-thrust acting on anti-slide pile is researched here. In this method, the safety factor of slope can be caculated without assuming the shape and position of failure surface beforehand, the randomness of physical and mechanical parameters of slope are introduced, and the combined action of retaining structure and rock mass is considered. Meanwhile, the thrust distribution form and structural internal force can be calculated, which are also probabilistic. A case study shows that the calculation results are more reasonable and the applicability of proposed method is clearly dependable in calculating the landslide thrust.

2010 ◽  
Vol 44-47 ◽  
pp. 3393-3397
Author(s):  
Fei Yue Wang ◽  
Long Jun Dong ◽  
Zhi Sheng Xu

Two kinds of the deficiencies exist in the traditional dam reliability and the safety coefficient calculation methods. First, it is impossible to give accurate mean to design variable in case study, because to large extent, means are greatly influenced by many objective factors or man-made effects, which degree of effects has greater degree of ambiguity. Second, the traditional reliability theory takes zero point as measure of dam’s failure or not, and on both sides of zero point the structure of state mutants from security to failure. But in fact, it’s very hard to give a definite limitation to the dam state from security to failure, because a fuzzy scope exists between stability and failure. On the basis of solving the above two issues, this paper for the first time applies fuzzy reliability theory to the stability research of tailings dam under earthquake action , considering fuzziness of both the event of tailings dam failure and the main variables and parameter. Integrating fuzziness and randomness, this paper explores fuzzy random reliability analysis methods of tailings dam engineering. The results of case study show that the calculation results agree well with the actual situation, this analysis method is more scientific and reasonable than traditional dam safety factor calculation method, and better reflects the real situation. It also provides a new way to calculate stability of tailing dam considering earthquake action.


2013 ◽  
Vol 655-657 ◽  
pp. 1864-1867
Author(s):  
Kun Zhang ◽  
Jun Qing Lei ◽  
Shan Shan Cao

Suspender is an important component of through arch bridge which transfers loads from bridge deck to arch rib, and its mechanical property is closely related to the safety of whole bridge. When suspender is damaged, the change of its tension will lead to internal force redistributions of the arch bridge. In this thesis, taken Xinkai River Bridge of Harbin-Dalian high-speed railway as a case study, which is the first long-span steel-box stacked arch bridge for high-speed railway in China, a finite element model is established by using the MIDAS/Civil software. By analyzing the calculation results and comparing static performances under non-destructive conditions, the influence of damage of suspenders on steel-box stacked arch bridge is summarized, which can provide reference data for health evaluation of the bridge during service period.


2021 ◽  
pp. 1-13
Author(s):  
Zhou Yanyan

The motion characteristics of particulate matter are very wonderful. With the development of science and technology, the motion of granular materials has gradually become a hot topic, which has attracted the attention of many scientists and experts. The research of granular matter has gradually become specialized and systematic. With the gradual improvement of the system, a frontier research field particle physics has been formed. Under the combined action of external force and internal force, particles can reflect the properties of fluid, but in the process of flow, it will show different size separation phenomenon from the fluid. The problem of particle separation was formally introduced into the field of physics in 1987. In reality, the existence of particles is not unique. In view of this, the author makes a systematic research and Analysis on the behavior and factors of vibration.


2011 ◽  
Vol 2 (3) ◽  
pp. 63-80
Author(s):  
Mike Brownsword ◽  
Rossi Setchi

Observations made while working with industry and government organisations have shown a number of issues with the implementation of current risk management best practice. A major issue in many cases is the lack of pragmatism associated with the risk management process and the need for a more formalised approach to risk management. In this paper, the authors propose and validate a multi-view approach to defining the processes required to carry out risk management. The formalised approach proposed includes a definition of risk, an ontology, a set of processes, and a pragmatic methodology, which shows an application of these processes enabling pro-active management of change. The ability of the processes to be applied to different types of risk has been demonstrated through a case study highlighting health and safety issues. Within the current engineering and economic climate this logical approach provides a visualisation which is consistent, repeatable, view based, and pragmatic.


2012 ◽  
Vol 204-208 ◽  
pp. 72-78
Author(s):  
Yu Wang ◽  
Yan Ting Yang ◽  
Feng Yu ◽  
Guang Lei Hu

Double-row piles retaining structure has been widely used in the project now, but the stress mechanism of double-row pile is more complex; Its internal force and deformation are affected by many factors. Understanding and mastering its effects has an important significance for the design and the optimization of double-row pile supporting structure. According to the comparison of the measured data and theoretical calculation about original support scheme and optimized support plan and combined with the soil test data, this paper takes the Jinan Cultural Arts Center(Theatre) stage bin foundation pit as an example to analyse the main effects of optimization design about double-pile supporting structure. The results show that soil shear strength, soil arch effect, influence of CFG composite foundation, pile-beam synergy effect and space effect of foundation pit play an important role for optimization design about double-pile supporting structure.


2014 ◽  
Vol 638-640 ◽  
pp. 884-887
Author(s):  
Yong Gang Du ◽  
Jing Cao ◽  
Zu De Ding

Based on the project of a foundation pit engineering adjacent to existing tunnel of Kunming metro line 1, a 3D calculation model is established in consideration the interaction of foundation pit support structures, tunnel structure and soil. In this paper, the authors have simulated the foundation pit excavation process in three conditions, and analyzed the changing laws of the lateral displacement and internal force of the tunnel induced by adjacent excavation under different conditions. Calculation results show that the distributions and the values of the displacement and internal force of the tunnel are obviously different under three different construction technologies, and the “jump dig” is the optimum excavation scheme due to the restriction in the excavation of foundation pit, and the lateral deformation of tunnel structure is smallest in this condition. The conclusion can provide a theoretical basis for similar excavation engineering construction.


1986 ◽  
Vol 18 (4) ◽  
pp. 921-932 ◽  
Author(s):  
Bent Natvig ◽  
Skule Sørmo ◽  
Arne T. Holen ◽  
Gutorm Høgåsen

Fortunately traditional reliability theory, where the system and the components are always described simply as functioning or failed, is on the way to being replaced by a theory for multistate systems of multistate components. However, there is a need for several convincing case studies demonstrating the practicability of the generalizations introduced. In this paper an electrical power generation system for two nearby oilrigs will be discussed. The amounts of power that may possibly be supplied to the two oilrigs are considered as system states.


2000 ◽  
Vol 37 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Nirmala Gnanapragasam

An analytical solution is developed to determine the active lateral earth pressure distribution on a retaining structure when it consists of a cohesive backfill (internal friction angle ϕ > 0, cohesion c > 0) with an inclined ground surface. The solution derived encompasses both Bell's equation (for cohesive or cohesionless backfill with a horizontal ground surface) and Rankine's solution (for cohesionless backfill with an inclined ground surface). The orientation of the failure surface is also determined. Results indicate that, unlike the soil-wall scenarios of Bell and Rankine where the failure planes are parallel with a fixed orientation independent of the overburden pressure, for sloping cohesive backfill (ϕ > 0, c > 0) the slope of the failure surface is a function of the overburden pressure and becomes shallower with depth, thus forming a curvilinear failure surface. The solution developed can also be used to check the sustainability of a slope. The analytical solution can be programmed conveniently in a computer.Key words: retaining structure, active earth pressure, cohesive backfill.


2014 ◽  
Vol 919-921 ◽  
pp. 762-768
Author(s):  
Zhi Wei Zhang ◽  
Rong Gui Deng ◽  
Ze Shuo Chen

In order to control deformation of foundation pit effectively and guarantee safety of building around, utilizing the stress characteristics of arch, use the new spatial retaining structure of arc row piles with arc ring beam on the pile top. The arc ring beam can provide constraint to pile top, so internal force of pile body distribution is uniform, and improve the integrity stability of piles. The ring beam with compression mainly can give use of high compression capability of concrete. According to the high order statically indeterminate characteristics of the retaining structure, calculation model of ring beam and pile respectively is established by the redundant forces between beam and pile top. By using deformation compatibility to set up flexibility equation of the retaining structure, and solve the redundant forces, then calculate the internal force and displacement of ring beam and piles. Through calculating the practical engineering, research the effect of excavation depth on internal force and displacement of piles and the arc ring beam on the pile top.


2011 ◽  
Vol 130-134 ◽  
pp. 128-134 ◽  
Author(s):  
Qiu Yan Fan ◽  
Mei Qian Wang ◽  
Sheng Cai Xu

In the past, when used the foundation coefficient to calculate the internal force of anti-slide pile, power series method is usually adopted. The deformation compatibility conditions and continuity conditions of sliding surface between non-anchoring section and anchoring section are exploited to determine the final result, causing the lengthy solution process and that there is no guarantee for the calculation accuracy. This paper uses the foundation coefficient method in the calculation of internal force of anti-slide pile and employs the “m-k” method with a more complicated up-down foundation structure to get the finite difference equation to determine the new-type deeply buried anti-slide pile displacement and internal force. Then the calculation on the internal force and displacement of the whole pile can be realized easily through the procedure method. Finally, this paper makes a contrastive analysis on the result of the finite difference method and finite element calculation through the case study. As long as the equal differential step length is small enough, the calculation accuracy can meet the demand of engineer design and the program graph processing result can optimize the design of anti-slide pile.


Sign in / Sign up

Export Citation Format

Share Document