Wind-Induced Response Analysis of Steel Tower Structure

2012 ◽  
Vol 238 ◽  
pp. 585-588 ◽  
Author(s):  
Chun Feng Wan ◽  
Jiang Wang ◽  
Hong Zhu ◽  
Lei Huang ◽  
Hao Wang ◽  
...  

In this paper, autoregressive (AR) method is firstly introduced to simulate wind speed time series. The agreement of the simulated wind speed spectrum to the target spectrum is verified. A 42m-high steel tower subjected to wind load is analyzed using ANSYS. Through modal analysis, it can be found that the first several modes of the structure are all translational vibration modes. Torsional vibration modes and local vibration modes appear from the 3th order mode. Meanwhile, time history analysis is applied to analyze the structural response. Results show that, under wind loads, the steel tower has large stresses in the chords which have abrupt section area change.

2012 ◽  
Vol 517 ◽  
pp. 824-831
Author(s):  
Yun Xiao ◽  
Jun Qing Lei ◽  
Zhong San Li

By response spectrum method, superposition method based elastic time-history analysis and nonlinear time-history analysis of Newmark-β based linear increasing acceleration method, the finite element models of frame piers 21#~29# of the Ziya River Bridge on Tianjin to Baoding railway are established, and an assistant program code is generated to analyze seismic response of the frame pier. Results indicate that the vibration modes of frame piers are scattered. Only a few modes would be aroused in a narrow band spectrum. And the seismic response obtained by the response spectrum method is generally 10%~20% smaller than which obtained by the elastic time-history analysis. Under seismic excitations along the longitudinal direction, the ratio of displacement difference between two columns to the maximum value is generally liner increased with the increasing of the girder deviation from the centre of the pier beam. And the plastic hinge yielding would occur both at the bottom and the top of pier columns under excitations of the transversal direction. As a result, taking more than 30 vibration modes into account is suggested in a seismic response analysis or design calculation for frame piers. A time-history analysis is recommended as well. The evaluation of earthquake resistant capability of the transversal direction should consider both the bottom and top of the columns, and the anti-seismic capability design of the longitudinal direction is one of the key points for frame piers in the ductility design.


2011 ◽  
Vol 94-96 ◽  
pp. 896-901
Author(s):  
Min Li ◽  
Yong Yao ◽  
Jion Yang

Analysis of wind-induced response of double-layer cylindrical reticulated shell by different methods of calculation . The results showed that the wind-induced response of the structure was increased and too safety by using existing load code calculation. Calculation of wind-induced response of double-layer cylindrical shell by using random vibration method, can only be considered first step mode, while the effect of high order mode could be ignored. The whole process of wind-induced response of the structure can be obtained by using combination of methods of harmony superposition and time-history analysis method, which can provide guidance for project design.


2013 ◽  
Vol 756-759 ◽  
pp. 4482-4486
Author(s):  
Chun Gan ◽  
Xue Song Luo

In recent years, frequent earthquakes have caused great casualties and economic losses in China. And in the earthquake, damage of buildings and the collapse is the main reason causing casualties. Therefore, in the design of constructional engineering, a seismicity of architectural structure is the pressing task at issue. Through time history analysis method, this paper analyzes the time history of building structural response and then it predicts the peak response of mode by response spectrum analysis. Based on this, this paper constructs a numerical simulation model for the architecture by using finite element analysis software SATWE. At the same time, this paper also calculates the structure seismic so as to determine the design of each function structure in architectural engineering design and then provides reference for the realization of earthquake-resistant building.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaohan Wu ◽  
Jun Wang ◽  
Jiangyong Zhou

A high four-tower structure is interconnected with a long sky corridor bridge on the top floor. To reduce the earthquake responses and member forces of the towers and sky corridor bridge, a passive control strategy with a friction pendulum tuned mass damper (FPTMD) was adopted. The sky corridor bridge was as the mass of FPTMD. The connection between the towers and the sky corridor bridge was designed as flexible links, where friction pendulum bearings (FPBs) and viscous dampers were installed. Elastoplastic time-history analysis was conducted by using Perform-3D model to look into its seismic behavior under intensive seismic excitation. The optimal design of the FPTMD with varying friction coefficients and radius of friction pendulum bearing (FPB) under seismic excitations was carried out, and the seismic behavior of the structure was also investigated at the same time.Results show that, for this four-tower connected structure, the friction pendulum tuned mass damper (FPTMD) has very well effect on seismic reduction. The structure can meet the seismic resistance design requirements.


2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.


Author(s):  
Michael Binsar Lubis ◽  
Mehrdad Kimiaei ◽  
Hongwei An ◽  
Reza Azarhoush

Abstract Typical recommended current profiles for marine operations can be found in offshore engineering guidelines and standards. However, for some offshore components (e.g. risers, umbilicals, risers) typical simplified current profiles can easily lead to unrealistic and conservative results. Due to recent developments in current measuring technology, current speed for deep water location can be easily acquired. However, the current speeds are usually recorded for long periods and in many measurement points along the water column. Hence, finding the extreme current profile based on the recorded time-history data is not an easy task since it needs excessive computational efforts. To determine the overall response of an offshore system, various methods have been developed to minimize the required computational efforts in working with big number of irregular current profiles. Mode-based analysis using empirical orthogonal functions is one of these methods. Total number of the utilized modes plays an important role in the numerical complexity of the problem as well as the accuracy of the results. In this study, for a given deep water location, the effects of the reduced number of modes are investigated through response analysis of a simple vertical fixed slender structure under thousands of current profiles. It is found that the reduced-mode profile can produce a good representation of the measured current profile, however it tends to underestimate the structural response.


2016 ◽  
Vol 845 ◽  
pp. 274-282
Author(s):  
Fauzan ◽  
Febrin Anas Ismail ◽  
Zev Al Jauhari

Keywords: Earthquake, Internal Forces, Displacement, Response Spectrum Analysis, Time History Analysis, PoundingAbstract. Teaching Hospital is an educational facilitiy for students in the Faculty of Medicine and also as a health services for the general public. The hospital building must be built in accordance with earthquake-safe building standards, so that buildings are not damaged in an earthquake. Andalas University Hospital was built at Padang in 2014 which was designed using Indonesian Seismic Code SNI 03-1726-2002 with quakes zone 6. Since 2012, a new Seismic Code, SNI 1726-2012, was issued and all the buildings should be designed by using the new code. Therefore, the authors are interested in analyzing the structural response of the hospital building by using new seismic code SNI 1726-2012. The results, then, were compared with the responses of the structure which calculated by using SNI 03-1726-2002.The results of analysis show that the structural responses in the internal forces and displacement by using SNI 1726-2012 was higher than those using SNI 03-1726-2002. In this study, an analysis of potential Pounding was also conducted by using dynamic analysis Time History method. The analytical result shows that there is no pounding between adjacent buildings at Andalas University Hospital Buildings.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xianglei Wei ◽  
An Xu ◽  
Ruohong Zhao

The traditional wind-induced response analysis of high-rise buildings conventionally considers the wind load as a stationary stochastic process. That is, for a certain wind direction angle, the reference wind speed (usually refers to the mean wind speed at the building height) is assumed to be a constant corresponding to a certain return period. Combined with the recorded data in wind tunnel test, the structural response can be computed using the random vibration theory. However, in the actual typhoon process, the average wind speed is usually time-variant. This paper combines the interval process model and the nonrandom vibration analysis method with the wind tunnel test and proposes a method for estimating the response boundary of the high-rise buildings under nonstationary wind loads. With the given upper and lower bounds of time-variant wind excitation, this method can provide an effective calculation tool for estimating wind-induced vibration bounds for high-rise buildings under nonstationary wind load. The Guangzhou East tower, which is 530 m high and the highest supertall building in Guangzhou, China, was taken as an example to show the effectiveness of the method. The obtained boundary response can help disaster prevention and control during the passage of typhoons.


2017 ◽  
Vol 11 (4) ◽  
pp. 70 ◽  
Author(s):  
Ali Vatanshenas

Earthquake is considered as the main destructive and collapsing factor of structures in near-fault zones, so design new structures and retrofitting existing structures in order to decrease structural responses is an unavoidable matter. One of the structural response reduction methods is using of TMDs. In this paper, a two-dimensional 10-storey steel structure as three structural models without PTMD, with a PTMD at the highest level and ten PTMDs with different characteristics at all levels with the Modal-FNA time-history analysis method under acceleration records with directivity and without directivity of Parkfield 2004 earthquake at the angle of the maximum acceleration response in the first mode period of structure after rotating the acceleration records at the station with directivity and its corresponding angle at the station without directivity were compared to each other in terms of the roof displacement, the input energy and the base shear. It was observed that the structure behavior in the case of using only one PTMD is better, but in the case where ten PTMDs with relative smaller masses were used compared to the case where only one PTMD was used is also with roof displacement reduction.


2013 ◽  
Vol 353-356 ◽  
pp. 2210-2215
Author(s):  
Jun Jun Wang ◽  
Lu Lu Yi

Modal analysis is also known as dynamic analysis for mode-superposition method. In the seismic response analysis of linear structural systems, it is one of the most commonly used and the most effective ways. Through the modal analysis of building structure, we can get some basic performance parameters of the structure. These parameters can help us make qualitative judgments for the respond of a structure first, and can help us judge whether they meet demands for conceptual design. Modal analysis is also the basis of other dynamic response analysis, including dynamic time history analysis and response spectrum analysis.


Sign in / Sign up

Export Citation Format

Share Document