Effect of Mechanical Aeration on Nitrogen and Microbial Activity in Sediment-Water Interface from Urban Lake

2012 ◽  
Vol 260-261 ◽  
pp. 770-775
Author(s):  
Jian Jun Chen ◽  
Shao Yong Lu ◽  
Zai Yi Liao ◽  
Shi Chao Ai ◽  
Min Sheng Huang

Aeration was one of the common techniques which were focused in environmental engineering research. In this study, experiments were carried out to investigate the effect of aeration on nitrogen (N) fractions and its transformation in the sediment-water interface from urban lake. In addition, we measured the dehydrogenase (DHA) and Chla content in surface sediment to detect the changes of the microbial activity. The aim is to explore the regulation of N migration and transformation in the water-sediment interface during the treatment work of lake pollution. By mechanical aeration, we control the DO content of the overlying water at the range of 1.2-1.5 kg/L, 2.5-4.5 mg/L and 6.1-6.2 mg/L. Results showed that DO in overlying water play a role to the variation of N in water-sediment interface. NH4+-N was the mainly N fraction released from sediment, the lower DO concentration (1.2-1.5 mg/L) in overlying water is favorable to the release of NH4+-N from sediment. Whether under aerobic or anaerobic condition, the releasing of NH4+-N from sediment were both higher than its consumption in the overlying water. The benthic microbial activity of the surface sediment (0-2 cm) was higher than that from bottom (6-8 cm). And the microbial activity in surface sediment was in optimum range when the overlying water DO content was about 2.5-4.5 mg/L.

2021 ◽  
Vol 11 (5) ◽  
pp. 2350
Author(s):  
Elisa Petranich ◽  
Matteo Crosera ◽  
Elena Pavoni ◽  
Jadran Faganeli ◽  
Stefano Covelli

The cycling of metal(loid)s at the sediment–water interface (SWI) was evaluated at two selected sites (VN1 and VN3) in an active fish farm in the Grado Lagoon (Northern Adriatic, Italy). In situ experiments using a transparent benthic chamber and the collection of short sediment cores were performed, to investigate the behavior of metal(loid)s in the solid (sediments) and dissolved (porewaters) phases. Total and labile concentration of metal(loid)s were also determined in sediments, to quantify their potential mobility. Comparable total concentrations were found at both sites, excluding As, Mn, Pb and V, which were higher at VN3. Metal(loid) porewater profiles showed a diagenetic sequence and a close dependence with redox (suboxic/anoxic) conditions in the surface sediments. Positive diffusive fluxes along with benthic fluxes, particularly at the more oxic site, VN1, were found for almost all metal(loid)s, indicating their tendency to migrate towards the overlying water column. Despite sediments at two sites exhibiting high total metal(loid) concentrations and moderate effluxes at the SWI, the results suggest that they are hardly remobilized from the sediments. Recycling of metal(loid)s from the SWI would not constitute a threat for the aquatic trophic chain in the fish farm.


2013 ◽  
Vol 10 (1) ◽  
pp. 53-66 ◽  
Author(s):  
W. J. Burt ◽  
H. Thomas ◽  
K. Fennel ◽  
E. Horne

Abstract. Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Direct quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water-column properties near the sediment-water interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water-column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of dissolved inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Numerical model results are consistent with the assumptions regarding a constant, single benthic source of 224Ra, the lack of mixing by advective processes, and a predominantly benthic source and sink of DIC and O2, respectively, with minimal water-column respiration in the deep waters of Bedford Basin. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, a relative deficit of nitrate in the observed flux ratios indicates that denitrification also plays a role in the oxidation of organic matter, although its occurrence was not strong enough to allow us to detect the corresponding AT fluxes out of the sediment. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.


2013 ◽  
Vol 726-731 ◽  
pp. 288-295 ◽  
Author(s):  
Huan Guang Deng ◽  
Dong Qi Wang ◽  
Zhen Lou Chen

Yangtze estuary data, collected over three years, indicates that the temporal and spatial distributions of the environmental gradients reflect complicated seasonal changes and spatial differences in the exchange flux of the dissolved inorganic nitrogen (DIN= NH4++ NO3-+ NO2-) across the sediment-water interface. Overall in northern sites of Yangtze estuary, sediment was a source of ammonium (NH4+) (-3.67~10.65 mmol·m-2·d-1) probably because of higher salinities. Sediment was a sink for NH4+ in southern sites (-18.45~3.33 mmol·m-2·d-1) during most years. The exchange behavior of nitrate (NO3-) showed temporal and spatial variation from the upper to lower estuary and ranged from-32.8 mmol·m-2·d-1 to 35.8 mmol·m-2·d-1. The interface exchange direction of ammonium was affected by NH4+ concentration, but the relationship between NO3- concentration and the direction of flux was not obvious. The concentration of nitrite (NO2-) was very low and its interface flux was not related to DIN concentration. Overall, the sediment of Yangtze Estuarine tidal flat was a source of DIN to overlying water in the spring, but a sink for DIN during the other three seasons of the year.


2012 ◽  
Vol 9 (5) ◽  
pp. 485 ◽  
Author(s):  
Beatriz Lourino-Cabana ◽  
Ludovic Lesven ◽  
Gabriel Billon ◽  
Lionel Denis ◽  
Baghdad Ouddane ◽  
...  

Environmental context Exchange processes at the water–sediment interface can release metals to riverine waters, having negative effects on organisms in the water column. We investigate the geochemical processes and metal exchange between the surface sediment and the overlying water under metal contamination conditions. Results suggest that the sediment can be a significant source of metal pollution in aquatic systems, particularly during anoxic events. Abstract Experiments were performed on the Deûle River (Northern France), which is strongly polluted by smelting plants, in the aim to investigate the influence of diagenetic processes and benthic macro-faunal activity on trace metal (Cd, Cu, Ni and Zn) and major metal (Fe, Mn) exchanges occurring at the water–sediment interface. Diffusive metal fluxes were determined from pore water metal concentration gradients measured in sediment cores. Benthic metal fluxes were evaluated using incubation chambers under dark conditions, and by further examining key variables (O2, CO2, redox potential and pH) affecting metal release and sequestration processes. As a whole, it was demonstrated that benthic fluxes were strongly dependent upon medium oxygenation and generation of colloidal iron oxides and hydroxides at the overlying water–sediment interface, raising the possibility of trace-metal adsorption and (co)precipitation.


2012 ◽  
Vol 9 (1) ◽  
pp. 41 ◽  
Author(s):  
Yue Gao ◽  
Martine Leermakers ◽  
Annelies Pede ◽  
Aurelie Magnier ◽  
Koen Sabbe ◽  
...  

Environmental contextContaminated sediments can have a large and lasting effect on marine ecosystems. It was discovered that significant amounts of pollutants, especially arsenic, were released from contaminated sediments during a phytoplankton bloom in the Belgian Continental Zone. Once released to the water column, these pollutants can accumulate up marine food chains and be a source of contaminants to humans. AbstractField data from the Belgian Continental Zone showed elevated trace metal concentrations at the sediment–water interface after the occurrence of a phytoplankton bloom. In the present study, laboratory incubation experiments were used to investigate the effect of the phytodetritus remineralisation process on the release of trace metals from contaminated muddy sediments. This remineralisation process was followed by the measurement of chlorophyll-a and dissolved organic carbon levels in the top sediment layers. Two gel techniques, diffusive equilibrium in thin films (DET) and diffusive gradients in thin films (DGT), were used to assess vertical metal profiles in the sediment pore waters and to calculate the metal effluxes. These metal effluxes compared very well with the trace metal concentration variations in the overlying water of the sediment. Much higher effluxes of Mn, Co and As were observed after 2 days of incubation in the microcosms which received additions of phytodetritus. This trend gradually decreased after 7 days of incubation, suggesting that the elevated efflux of trace metals was proportional to the quantity of phytodetritus mineralised at the sediment–water interface. The release of large amounts of toxic elements from the sediments after phytoplankton blooms can therefore potentially affect the marine ecosystem in the Belgian Continental Zone.


2020 ◽  
Vol 20 (4) ◽  
pp. 1241-1252
Author(s):  
Han Wang ◽  
Yuping Han ◽  
Lide Pan

Abstract Based on overlying water and sediment sample collection from 15 sites during July, September, November 2018 and January 2019 in the hydro-fluctuation belt of Danjiangkou reservoir China, the variation of nitrogen (N) was studied. And the concentrations of NH4+-N, NO3−-N and NO2−-N in the sediment, pore water and overlying water were determined to evaluate the diffusion flux across the water–sediment interface. The results showed that the lowest sediment N concentration was 36.54 mg/L in July, and the highest one was 145.93 mg/L in November. Spatially, the sediment N concentrations were higher in tidal soil and loam than in sandy soil. According to the diffusion fluxes of NH4+, NO3− and NO2−, sediments at all sites tend to release N to the overlying water except in the sampling month of November, when the sediment acts as a sink of NO3−. The highest release rates of NH4+-N and NO3−-N were 17.66 mg m−2·d−1 and 80.15 mg m−2·d−1, respectively, which are much higher than the release rate of NO2−-N (0.29 mg m−2·d−1). The findings indicate that hydro-fluctuation belt sediment contributes a lot to the nitrogen contents in the overlying water, and internal pollution is a main reason for the water quality deterioration and even eutrophication.


2017 ◽  
Vol 75 (6) ◽  
pp. 1455-1465 ◽  
Author(s):  
Shengnan Zhao ◽  
Xiaohong Shi ◽  
Changyou Li ◽  
Sheng Zhang ◽  
Biao Sun ◽  
...  

Overlying water and sediment samples were collected from 11 locations in Ulansuhai Lake in June of 2012 to determine the concentration of dissolved inorganic phosphorus (DIP) in the interstitial water, overlying water and sediment and to estimate the diffusion flux of DIP at the sediment–water interface. The DIP levels in overlying water were 0.004–0.185 mg/L (average = 0.062 mg/L), while they were 0.05–0.25 mg/L (average = 0.124 mg/L) in the interstitial water in the 0–2 cm surface sediment. Moreover, the annual mean exchange flux of DIP in the sediment was between −0.092 mg/m2·d and 0.053 mg/m2·d, and this occurred via internal source action in most areas. After area weighting, it is estimated that the exchange capacity of DIP at the sediment–water interface of the Ulansuhai Lake is 1.30 t/a. These findings indicate internal loading of phosphorus in sediment of the Ulansuhai Lake; thus, the diffusion of DIP in the interstitial water has effects on the lake, with a degree of influence of 2.7% to 81.5%.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Xiaoping Yu ◽  
Yafei Guo ◽  
Qin Wang ◽  
Tianlong Deng

Arsenic species including arsenite As(III), arsenate As(V), monomethylarsenate (MMA), dimethylarsenate (DMA), and some diagenetic constituents (Fe, Mn, and S2−) in porewaters along with the unstable arsenic species in sediments collected from a typical intertidal zone of Bohai Bay in China were measured. Their vertical distributions were subsequently obtained to reveal the transportation and transformation characteristics of arsenic at the intertidal sediment-water interface (SWI). Results show that the reduction of As(V) by microorganisms occurred in sediments, but the methylation of arsenic by microorganisms was weak in the intertidal zone. The distribution of As(V) was mainly controlled by Mn, whereas As(III) appeared to be more likely controlled by Fe. Arsenic in sediments mainly existed in a stable state, so that only little arsenic could be released from sediments when the environmental conditions at the SWI are changed. As(III) diffused from porewaters to the overlying water while the opposite was true for As(V) at that time when the samples were collected. The total diffusion direction for arsenic across the SWI was from porewaters to the overlying water with a total diffusive flux estimated at 1.23 mg·m−2·a−1.


Sign in / Sign up

Export Citation Format

Share Document