Effect of Ni Addition on Formation of Nanocrystalline Phase during Mechanical Alloying of (Fe Al)-40(60) at.% Ni and (Fe Al3)-10(30) at.% Ni Powders

2013 ◽  
Vol 275-277 ◽  
pp. 1814-1817
Author(s):  
Zhang Jing ◽  
Qi Zhi Cao ◽  
Guo Hua Huang ◽  
Jin Li Huang

Al-Fe-Ni ternary powder mixtures containing (FeAl)-40(60) at.% Ni and (FeAl3)-10(30) at.% Ni were mechanically alloyed by a high-energry planetary ball mill. The structural evolution of the powders during milling was studied by X-ray diffraction technique (XRD). During milling of (FeAl)-40(60) at.% Ni system, Al and Fe solid solutions formed at the early stage change to FeAl, AlNi3 and FeNi3 intermetallic compounds. However, the Al and Fe solid solutions observed at the early stage transform into Al3Ni2, AlFe3 and AlFe0.23Ni0.77 intermetallic compound at last. The experimental results showed that the last milling products were decided by the proportion of atom between Al and Fe in the powder and the Ni content in the power had not affected to the last products.

2012 ◽  
Vol 194 ◽  
pp. 187-193 ◽  
Author(s):  
J.M. Loureiro ◽  
Benilde F.O. Costa ◽  
Gerard Le Caër ◽  
Bernard Malaman

Ternary alloys, (Fe50−x/2Co50−x/2)Snx(x ≤ 33 at.%), are prepared by mechanical alloying from powder mixtures of the three elements. As-milled alloys are studied by X-ray diffraction and 57Fe and 119Sn Mössbauer spectroscopy. The solubility of Sn in near-equiatomic bcc FeCo is increased from ~0.5 at. % at equilibrium to ~20 at.% in the used milling conditions. The average 119Sn hyperfine magnetic field at room temperature is larger, for any x, than the corresponding fields in mechanically alloyed Fe-Sn solid solutions.


2013 ◽  
Vol 275-277 ◽  
pp. 1751-1754
Author(s):  
Zhang Jing ◽  
Qi Zhi Cao ◽  
Zheng Liang Li

Nanostructured Al-25at.%Fe-5at.%Ni intermetallics were prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was employed to examine the morphology of the powders. Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). The solid solutions of Fe (Al) and Ni (Fe) in the Al70Fe25Ni5 system are observed at the early milling stage. The solid solutions transforms into amorphous and disordered Al (Fe, Ni) phase. The last milling products in the Al70Fe25Ni5 system are Al3Ni2, AlFe3 and AlFe0.23Ni0.77 phases.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.


2011 ◽  
Vol 495 ◽  
pp. 1-4 ◽  
Author(s):  
Saci Messaadi ◽  
Mosbah Daamouche ◽  
Abderrahim Guittoum ◽  
Hadria Medouer ◽  
Noureddine Fenineche ◽  
...  

The aim of this work is to understand the early stages in the growth mechanism of invar (Fe64Ni34) alloys and also to study the influence of potential on the evolution of their crystalline structures. Fe64Ni34 layers were deposited onto copper substrates under optimal conditions using the electrochemical method of cyclic voltammetry (CV) and chronoamperometry (CA). The influence of the potential is examined and the nucleation kinetics is discussed. In this purpose, the obtained experimental data was interpreted by applying useful theoretical methods developed by Scharifker and Hills. X-ray diffraction experiments were performed on all samples in order to follow the structural evolution of Fe64Ni34 layers as a function of the potential.


2006 ◽  
Vol 509 ◽  
pp. 135-140
Author(s):  
Francisco Cruz-Gandarilla ◽  
R. Gayosso-Armenta ◽  
J. Gerardo Cabañas-Moreno ◽  
Heberto Balmori-Ramírez

Elemental powder mixtures of Co and Ti were subjected to high-energy ball milling in order to produce mechanically alloyed powders with nominal compositions Co64Ti36, Co67Ti33, Co70Ti30, Co73Ti27, Co76Ti24 and Co85Ti15. The mechanically alloyed powders were treated during 30 minutes in inert atmosphere at temperatures in the range 300 – 700 °C. Both the as-milled powders as well as those subjected to heat treatments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and differential thermal analysis. As-milled products consist mostly of agglomerated powders with a size between 10 and 80 µm which give an amorphous-like diffraction pattern, except for the Co85Ti15 sample whose pattern presents the characteristic peaks of the Co3Ti intermetallic phase. The transformation of the asmilled powders occurs at temperatures in the range of about 530 – 670 °C with clearly observed exothermic events. The Co3Ti phase is found in all heat treated samples, together with fcc-Co (in Co76Ti24 and Co85Ti15) or the hexagonal Co2Ti intermetallic phase (in Co64Ti36, Co67Ti33 and Co70Ti30); the Co73Ti27 sample was essentially single-phase Co3Ti after heating to 700 °C. Our results suggest the occurrence of crystallization of an amorphous phase in two overlapping stages during heating of the mechanically alloyed powders.


1996 ◽  
pp. 25-28
Author(s):  
Ph. Goudeau ◽  
J. Mimault ◽  
Th. Girardeau ◽  
K. Reklaoui ◽  
O. Proux ◽  
...  

2012 ◽  
Vol 727-728 ◽  
pp. 210-215
Author(s):  
Alfeu Saraiva Ramos ◽  
Ana Carolina de Miranda Marzullo ◽  
Erika Coaglia Trindade Ramos ◽  
Dalcy Roberto dos Santos ◽  
Vinicius André Rodrigues Henriques

The present work reports on the structural evaluation of mechanically alloyed Ti-xZr-22Si-11B (x = 5, 7, 10, 15 and 20 at-%) powders. Milled powders and hot-pressed alloys were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. The Si and B atoms were preferentially dissolved into the Ti and Zr lattices during ball milling of Ti-xZr-22Si-11B (x = 7, 10, 15 and 20 at-%) powders, and extended solid solutions were achieved. The displacement of Ti peaks was more pronounced to the direction of lower diffraction angles with increasing Zr amounts in mechanically alloyed Ti-Zr-Si-B powders, indicating that the Zr atoms were also dissolved into the Ti lattice.


1996 ◽  
Vol 275 (1-2) ◽  
pp. 25-28 ◽  
Author(s):  
Ph. Goudeau ◽  
J. Mimault ◽  
Th. Girardeau ◽  
K. Reklaoui ◽  
O. Proux ◽  
...  

2008 ◽  
Vol 591-593 ◽  
pp. 135-140 ◽  
Author(s):  
Gilbert Silva ◽  
Erika Coaglia Trindade Ramos ◽  
Alfeu Saraiva Ramos

This work discusses on the effect of milling parameters on the TiB and TiB2 formation in Ti-50at%B and Ti-66at%B powders, respectively. Both powder mixtures were processed in a planetary ball Fritsch P-5 ball mill under Ar atmosphere, varying the milling parameters: rotary speed (150 and 200 rpm), size of balls (10 and 19mm diameter) and ball-to-powder weight ratio (2:1 and 10:1). In order to obtain the equilibrium structures the milled powders were heated at 1200oC for 1h. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermal analysis (DSC). XRD results indicated that extended Ti(B) solid solutions were formed during ball milling of Ti-50at%B and Ti-66at%B powders. After milling for 170h it was noted the TiB and TiB2 formation in Ti-50B and Ti-66B powders processed under higher-energy condition. DSC analysis revealed that the TiB2 formation was completed during heating of mechanically alloyed Ti-66at%B powders only. After heating at 1200oC for 1h, a large amount of TiB and TiB2 was found in Ti-B powders milled under higher energy condition.


2012 ◽  
Vol 476-478 ◽  
pp. 1476-1479
Author(s):  
Qi Zhi Cao ◽  
Jing Zhang ◽  
Jian Ying Li

Nanostructured Fe25Al50Ni25intermetallics was prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). Disordered Al(Fe,Ni) solid solution was formed After 50 h of milling. Al(Fe,Ni) solid solution milled for 100h transformed into FeNi,FeNi3 and AlNi3 phase. The power annealed at temperature 500 results in forming of intermetallics AlFe0.23Ni0.77, Al1.1Ni0.9 , AlNi and two unknown phase after 5h milling. The nanocrystalline metallic compound was obtained after 100h milling.


Sign in / Sign up

Export Citation Format

Share Document