The Studies of Optimal Arranging of the Solar Photovoltaic Battery Array and Optimal Matching of Power System for a Parking Garage

2013 ◽  
Vol 283 ◽  
pp. 99-107 ◽  
Author(s):  
Jian Long Xu ◽  
Qi Rong Yang ◽  
Meng Du ◽  
Zhi Qiang Chang

The output power of the photovoltaic battery array of a solar parking garage is affected by two factors of arranging form and external conditions. Firstly, a solar parking garage in Qingdao is taken as an example. A simulation model of its solar panel square is established based on Matlab/S-Fcn/Simulink. The GX-120 solar panel with the size of 1250mm×808mm is taken as an example. And the normal external conditions and the principle of maximum output power in one year are also considered. Simulation results based on Matlab/S-Fcn/Simulink demonstrate that solar panels should be put on the dip angle of 30,with the span of 1605mm between two row. 28 solar panels can be arranged on the top of the parking space. Secondly, an experiment setup is established in order to simulate the electricity generating process by solar panels and parking process. Two GX-120 solar panels are employed as power generation device, while two 12V, 195AH storage batteries are employed as energy storage device. A direct 24V electromotor with hydromantic pressure 18MPa device is applied as simulation load, which can demonstrate the ascending and descending process in the parking space. The experiment studies the performance of the solar panels under different weather conditions. Results show that generating capacity of two pieces of panels can make a parking unit work eleven times, five times, one time and six times separately under four kinds of weather conditions (sunny, cloudy, rainy, and foggy day). The energy matching principle is that the parking lot only can provide 6.85 kilowatt for electric vehicles one day in the condition that each parking space parks cars four times every day in order to meet the continuous use of the parking garage. The rest of electricity must be storied in the battery.

2012 ◽  
Vol 51 (10S) ◽  
pp. 10NF08 ◽  
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 162-167
Author(s):  
Haris Masrepol ◽  
Muldi Yuhendri

Solar panels are a renewable energy power plant that uses sunlight as its main energy source. The power generated by solar panels are determined by the size of the solar panels, solar radiation and temperature. The power of the solar panels is also determined by the output voltage of the solar panels. To get the maximum output power at any time, it is necessary to adjust the output voltage of the solar panel. This study proposes controlling the maximum output power of solar panels, also known as maximum power point tracking (MPPT) by adjusting the output voltage of the solar panels using a buck converter. The buck converter output voltage regulation at the maximum power point of the solar panel is designed with the Perturbation and Observation (PO) algorithm which is implemented using an Arduino Mega 2560. This MPPT control system is applied to 4x50 Watt-Peak (WP) solar panels which are connected in parallel. The experimental results show that the proposed MPPT control system with the PO algorithm has worked well as expected. This can be seen from the output power generated by the solar panels already around the maximum power point at any change in solar radiation and temperature.


2012 ◽  
Vol 51 ◽  
pp. 10NF08
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

Author(s):  
Fadliondi Fadliondi ◽  
Haris Isyanto ◽  
Budiyanto Budiyanto

The ouput power of solar panel that decreased due to shading has been improved using bypass diode method. The placement of bypass diodes increased the output current and power. New peaks and maximum powerpoints on the current-svoltage characteristics and power-voltage characteristics were observed. Without bypass diodes, the maximum output power was only around 50 W. After placing bypass diodes, the first peak around 115 W and second peak around 150 W appeared at voltage of around 31 V and 40 V, respectively.


2019 ◽  
Vol 14 (1) ◽  
pp. 170-181
Author(s):  
Hassan Kenjrawy ◽  
Carlo Makdisie ◽  
Issam Housamo ◽  
Hassan Haes Alhelou

The use of renewable resources for energizing the modern power systems has recently increased due to its sustainability and low operating costs. Photovoltaic (PV) system appears to be a good solution due to the fact that it can be established and operated locally. However, the maximum output power of these systems is usually achieved by using the maximum sun and power point (MPP) tracking techniques. This paper suggests a novel genetic algorithm (GA)-based technique to obtain the maximum output power of practical PV system located in the Latakia province of Syria. Based on this technique, azimuth and elevation angles of solar panels located in Latakia are first determined to track maximum radiation of the sun for every day of the whole year. After that, a GA-based technique is developed to track the maximum power point corresponding to maximum radiation during the year. Simulation results in MATLAB environment demonstrate the validation and effectiveness of the proposed GA-based technique to obtain the maximum generated power of the PV system. The results of this research can be easily adopted as a database reference to design the PV control system.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 508
Author(s):  
Kui You ◽  
Zihan Zhou ◽  
Chao Gao ◽  
Qiao Yang

Biochar is a kind of carbon-rich material formed by pyrolysis of biomass at high temperature in the absence or limitation of oxygen. It has abundant pore structure and a large surface area, which could be considered the beneficial characteristics for electrodes of microbial electrochemical systems. In this study, reed was used as the raw material of biochar and six biochar-based electrode materials were obtained by three methods, including one-step biochar cathodes (BC 800 and BC 700), biochar/polyethylene composite cathodes (BP 5:5 and BP 6:4), and biochar/polyaniline/hot-melt adhesive composite cathode (BPP 5:1:4 and BPP 4:1:5). The basic physical properties and electrochemical properties of the self-made biochar electrode materials were characterized. Selected biochar-based electrode materials were used as the cathode of sediment microbial electrochemical reactors. The reactor with pure biochar electrode (BC 800) achieves a maximum output power density of 9.15 ± 0.02 mW/m2, which increases the output power by nearly 80% compared with carbon felt. When using a biochar/polyaniline/hot-melt adhesive (BPP 5:1:4) composite cathode, the output power was increased by 2.33 times. Under the premise of ensuring the molding of the material, the higher the content of biochar, the better the electrochemical performance of the electrodes. The treatment of reed powder before pyrolysis is an important factor for the molding of biochar. The one-step molding biochar cathode had satisfactory performance in sediment microbial electrochemical systems. By exploring the biochar-based electrode, waste biomass could be reused, which is beneficial for the environment.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Nan Wu ◽  
Yuncheng He ◽  
Jiyang Fu ◽  
Peng Liao

In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 μW (circuit load 270 kΩ; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 μW (circuit load 470 kΩ; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.


Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


Author(s):  
James F. Walton ◽  
Andrew Hunsberger ◽  
Hooshang Heshmat

In this paper the authors will present the design and preliminary test results for a distributed electric generating system that uses renewable energy source for economical load-following and peak-shaving capability in an oil-free, high-speed micro-turboalternator system using compliant foil bearings and a permanent magnet alternator. Test results achieved with the prototype system operating to full speed and under power generating mode will be presented. A comparison between predicted and measured electrical output will also be presented up to a power generating level of 25 kWe at approximately 55,000 rpm. The excellent correlation between design and test provides the basis for scale up to larger power levels. Based upon the turboalternator test results a thermodynamic cycle analysis of a system using low grade waste heat water at approximately 100 C will be reviewed. The tradeoff study results for a series of environmentally friendly refrigerant working fluids will also be presented including sensitivity to vaporization and condensing temperatures. Based on the cycle and pinch point analyses predicted maximum output power was determined. Finally a preliminary turbine design for the selected R134a working fluid was completed. The results of this study show that a net output power level of greater than 40 kW is possible for approximately 240 l/m flow of water at 100C is possible.


Sign in / Sign up

Export Citation Format

Share Document