Distribution Law Detection of Aquifer in the First District of Lu Xin Mine Using TEM

2013 ◽  
Vol 303-306 ◽  
pp. 357-362
Author(s):  
Ming Zhang ◽  
Jian Guo Ning ◽  
Cheng Lin Tian ◽  
Xue Sheng Liu

As the background of hydrological and geological conditions in Lu Xin Mine of Xinwen Mining Group, the transient electromagnetic instrument was used to detect the distribution law of aquifer around the first district. The detection results show that the roof and floor of 13# coal seam and the top of Jurassic are relatively rich in water, but the hydraulic connection between the upper and lower is relatively weak. The roof and floor of 6# and 9# coal seam and the bottom of Neogene are rich in water and the hydraulic connection is strength, and this place is located in the edge of basin which is easy for groundwater to supply.

2020 ◽  
Vol 12 (1) ◽  
pp. 1533-1540
Author(s):  
Si Yuanlei ◽  
Li Maofei ◽  
Liu Yaoning ◽  
Guo Weihong

AbstractTransient electromagnetic method (TEM) is often used in urban underground space exploration and field geological resource detection. Inversion is the most important step in data interpretation. Because of the volume effect of the TEM, the inversion results are usually multi-solvable. To reduce the multi-solvability of inversion, the constrained inversion of TEM has been studied using the least squares method. The inversion trials were performed using two three-layer theoretical geological models and one four-layer theoretical geological model. The results show that one-dimensional least squares constrained inversion is faster and more effective than unconstrained inversion. The induced electromotive force attenuation curves of the inversion model indicate that the same attenuation curve may be used for different geological conditions. Therefore, constrained inversion using known geological information can more accurately reflect the underground geological information.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2012 ◽  
Vol 594-597 ◽  
pp. 1338-1342
Author(s):  
Qing Hai Li ◽  
Ren Shu Yang ◽  
Wei Ping Shi

In first mine of Chagannaoer, 2# coal seam, the mainly mined out layer, was 22.00m thickness in average. In order to meet the requirements of production ability, the mine was planned to apply mining technology of fully mechanized caving. Good or bad of top coal’s caving was an important prerequisite which decided the mining technology of top coal caving could be chosen or not. Due to lack of producing mines in this region and no experience to refer, we simulated the mining process of 2# coal seam using numerical software of FLAC3D, and gained evolution laws of stress and displacement of top coal and overlying strata and expansion laws of plastic zone. Through analysis, we got that the top coal damaged seriously and the top coal could be caved smoothly. Relying on the geological conditions of site, we verified the simulated results with method of fuzzy comprehensive evaluation. Combined with the research results, we decided that 2# coal seam’s caving was better and was convenient for top coal caving, so it was suitable for caving mining in 2# coal seam in first mine of Chagannaoer.


Author(s):  
Yu.R. Vladov ◽  
◽  
M.Yu. Nesterenko ◽  
Yu.M. Nesterenko ◽  
A.Yu. Vladova ◽  
...  

The predominant area of application of the developed methodology is the construction of the distribution of the geodynamic state of the developed hydrocarbon fields in oil and gas basin, and the identification of the corresponding distribution law. A number of the hydrocarbon deposits in terms of geological conditions of occurrence, structure and other parameters are geodynamically hazardous during their development. The Federal Law «On Subsurface Resources» (Article 24) requires conducting a complex of geological, surveying, and other observations sufficient for ensuring a normal technological cycle of work, and the prediction of hazardous situations. The developed methodology based on the construction of aggregated additive models for each reservoir and field is presented. It includes four sequential stages (24 operations): first — prepare geodynamic data; second — determine the geodynamic state of productive strata; third — find the geodynamic state of the developed deposits subsoil; fourth — build the distribution of the bowels geodynamic state of these fields for the entire oil and gas basin and identify the relevant distribution law. Oil and gas basin in the west of the Orenburg Region (Volga — Ural and Caspian oil and gas provinces) is considered as an example of implementation. Unique data of twenty geodynamic parameters of 320 productive strata (56 fields) were used. It is revealed that in accordance with the Pearson criterion, the theoretical data with a high confidence probability (95 %) correspond to the law of normal distribution. Developed methodology has significant technical and economic advantages, since it allows to identify the geodynamic state of productive strata and subsoil of the fields being developed, to identify hazardous geodynamic processes and to choose rational modes for the development of hydrocarbon deposits.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lei Zhang ◽  
Lin Xu ◽  
Yong Xiao ◽  
NingBo Zhang

A coal mine in Datong is an integrated mine. At present, there is goaf in the upper and lower part of the mining coal seam. There is a lot of ponding in the goaf, which has great potential safety hazards for production. In order to find out the scope and location of ponding in goaf, the comprehensive geophysical exploration method combining transient electromagnetic method and high-density resistivity method is used to carry out the research. Firstly, the time-base, turn-off time, receiving delay, current, superposition times, and other parameters of the instrument are tested on the surface of known goaf to obtain the best instrument parameters, and the parameters are used to verify the feasibility of the research scheme; then, the transient electromagnetic method is used for large-area exploration on the surface of the mine, the suspected goaf ponding area is found through comprehensive analysis, and the high-density resistivity exploration is arranged in the suspected goaf ponding area. According to the obtained results, the scope and location of the goaf ponding area are accurately located through comprehensive analysis. The results show that there are two goaf ponding areas in the exploration area, which are located above the 8# coal seam currently mined; the range and location of goaf ponding area can be accurately obtained by using the comprehensive geophysical method of high-density electrical method and transient electromagnetic method. This method can provide reference for mine water prevention and control in Datong area and has great practical significance to ensure coal mine safety production.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rui Wang ◽  
Yiyuan Liu ◽  
Xianghui Deng ◽  
Yu Zhang ◽  
Xiaodong Huang ◽  
...  

With the rapid development of tunnel construction in China, deep buried and long tunnel projects are emerging in areas with complex engineering geological conditions and harsh environment, and thus large deformation of tunnels under conditions of high in situ stress and soft rock becomes increasingly prominent and endangers engineering safety. Therefore, it is of great significance to control the deformation and improve the stability of surrounding rock by analyzing the thickness and distribution law of loose circle according to the unique mechanical properties and failure mechanism of surrounding rock of large deformation soft-rock tunnel. Based on unified strength theory, this paper deduces the radius calculation formula of the loose circle by considering the influence of intermediate principal stress. Furthermore, the theoretical calculations and field tests of the loose circle in the typical sections of grade II and III deformation of Yuntunbao tunnel are carried out, and the thickness and distribution law of loose circle of surrounding rock of large deformation soft-rock tunnel is revealed. The results show that the formula based on the unified strength criterion is applicable for a large deformation tunnel in soft rock.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Guiqiang Zheng ◽  
Bin Sun ◽  
Dawei Lv ◽  
Zhejun Pan ◽  
Huiqing Lian

Coalbed methane (CBM) reservoir properties and relationship of properties with burial depth were studied based on the data derived from 204 deep CBM production wells in Qinshui Basin, China. Through the study, it is found that permeability and porosity decrease with the increase of burial depth and the decreasing trend shows step-change characteristics at a critical burial depth. They also show divisional characteristics at certain burial depth. Gas content, geostress, and geotemperature increase with the increase of burial depth, and the increasing trend shows step-change characteristics and also have divisional characteristics at certain burial depth. Based on the previous study on the reservoir property changes with burial depth, three series of critical depth using different parameters are obtained through simulating the critical depth using the BP neural network method. It is found that the critical depth is different when using different parameters. Combined the previous study with the normalization of three different parameter types, the critical depth in Qinshui Basin was defined as shallow coal seam is lower than 650 m and transition band is 650–1000 m, while deep coal seam is deeper than 1000 m. In deep coal seams, the geological conditions and recovery becomes poor, so it can be defined as unfavorable zones. Therefore, other development means, for example, CO2 injection, need to be used to accelerate the deep coal methane development.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenkai Ru ◽  
Shanchao Hu ◽  
Jianguo Ning ◽  
Jun Wang ◽  
Qingheng Gu ◽  
...  

During the mining of the shallow-buried and close-distance multiple coal seam, the rheological failure of the surrounding weakly cemented soft rock of the roadway in the lower coal seam under the concentrated stress is very rare. However, the stress on the roof of the upper coal seam is transmitted down through the residual pillar, resulting in this situation. Taking the Gaojialiang coal mine which is located in the mining areas of western China as the research object, the failure mechanism of the roadway roof under the residual coal pillar in the shallow-buried and close-distance multiple seam is studied in combination with field monitoring and numerical simulation. Furthermore, suggestions on the roadway support under such geological conditions are proposed. The results show that the residual coal pillar in the working face of the lower coal seam gradually collapses during the mining of the shallow-buried and close-distance multiple coal seam. The concentrated stress transferred by the coal pillar increases further, which makes the roof stress of the lower coal seam roadway to increase continuously. In addition, the stress of the roadway roof also increases further due to the rotation of the broken rock above the goaf, and the peek region of stress moves to the nongoaf area. Combining the heavy concentrated stress and weakly cemented property, the shallow-buried surrounding rock shows rheological behavior and failure. Therefore, we must pay more attention on the creep failure of the roadway roof under the action of the residual coal pillar even in the shallow-buried coal seam.


Author(s):  
Tongbin Zhao ◽  
Zhenyu Zhang ◽  
Yunliang Tan ◽  
Chengzhong Shi ◽  
Ping Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document