scholarly journals Study on the Rheological Failure Mechanism of Weakly Cemented Soft Rock Roadway during the Mining of Close-Distance Coal Seams: A Case Study

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenkai Ru ◽  
Shanchao Hu ◽  
Jianguo Ning ◽  
Jun Wang ◽  
Qingheng Gu ◽  
...  

During the mining of the shallow-buried and close-distance multiple coal seam, the rheological failure of the surrounding weakly cemented soft rock of the roadway in the lower coal seam under the concentrated stress is very rare. However, the stress on the roof of the upper coal seam is transmitted down through the residual pillar, resulting in this situation. Taking the Gaojialiang coal mine which is located in the mining areas of western China as the research object, the failure mechanism of the roadway roof under the residual coal pillar in the shallow-buried and close-distance multiple seam is studied in combination with field monitoring and numerical simulation. Furthermore, suggestions on the roadway support under such geological conditions are proposed. The results show that the residual coal pillar in the working face of the lower coal seam gradually collapses during the mining of the shallow-buried and close-distance multiple coal seam. The concentrated stress transferred by the coal pillar increases further, which makes the roof stress of the lower coal seam roadway to increase continuously. In addition, the stress of the roadway roof also increases further due to the rotation of the broken rock above the goaf, and the peek region of stress moves to the nongoaf area. Combining the heavy concentrated stress and weakly cemented property, the shallow-buried surrounding rock shows rheological behavior and failure. Therefore, we must pay more attention on the creep failure of the roadway roof under the action of the residual coal pillar even in the shallow-buried coal seam.

2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Shang Yang ◽  
Xuehui Li ◽  
Jun Wang ◽  
Shuhao Yang ◽  
Zhen Shen ◽  
...  

To solve the problem of strong ground pressure behaviour under a residual coal pillar in the overlying goaf of a close-distance coal seam, this paper proposes the technology of weakening and relieving the residual coal pillar in the overlying goaf by a high-pressure water jet. Based on the geological occurrence of the No. 3 coal seam and mountain No. 4 coal seam in the Yanzishan coal mine, the high-pressure water jet pressure relief technology of residual coal pillars in the overlying goaf of close-distance coal seams was studied by theoretical analysis and field industrial tests. First, the elastic-plastic zone of the residual coal pillar and the stress distribution law of the floor are obtained by theoretical analysis, and the influence degree of the residual coal pillar on the support of the lower coal seam working face is revealed. Then, a high-pressure water jet combined with mine pressure is proposed to weaken the residual coal pillar. Finally, through the residual coal pillar hydraulic cutting mechanical model and “double-drilling double-slot” model, the high-pressure water jet drilling layout parameters are determined, and an industrial field test is carried out. The single knife cutting coal output and 38216 working face hydraulic support monitoring data show that high-pressure hydraulic slotting can weaken the strength of the coal body to a certain extent, destroy the integrity of the residual coal pillar, cut off the load transmission path of the overlying strata, and reduce the working resistance of the hydraulic support under the residual coal pillar to a certain extent, which is beneficial to the safe mining of the working face.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei-ming Wang ◽  
Zeng-hui Zhao ◽  
Yong-ji Wang ◽  
Xin Gao

Mining areas in western China are mainly located in soft rock strata with poor bearing capacity. In order to make the deformation failure mechanism and strength behavior of weakly consolidated soft mudstone and coal rock hosted in Ili No. 4 mine of Xinjiang area clear, some uniaxial and triaxial compression tests were carried out according to the samples of rocks gathered in the studied area, respectively. Meanwhile, a damage constitutive model which considered the initial damage was established by introducing a damage variable and a correction coefficient. A linearization process method was introduced according to the characteristics of the fitting curve and experimental data. The results showed that samples under different moisture contents and confining pressures presented completely different failure mechanism. The given model could accurately describe the elastic and plastic yield characteristics as well as the strain softening behavior of collected samples at postpeak stage. Moreover, the model could precisely reflect the relationship between the elastic modulus and confining pressure at prepeak stage.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhuoyue Sun ◽  
Yongzheng Wu ◽  
Zhiguo Lu ◽  
Youliang Feng ◽  
Xiaowei Chu ◽  
...  

Numerical simulations have often been used in close-distance coal seam studies. However, numerical simulations can contain certain subjective and objective limitations, such as high randomness and excessively simplified models. In this study, close-distance coal seams were mechanically modeled based on the half-plane theory. An analytical solution of the floor stress distribution was derived and visualized using Mathematica software. The principal stress difference was regarded as a stability criterion for the rock surrounding the roadway. Then, the evolution laws of the floor principal stress difference under different factors that influence stability were further examined. Finally, stability control measures for the rock surrounding the roadway in the lower coal seam were proposed. The results indicated the following: (1) The principal stress difference of the floor considers the centerline of the upper coal pillar as a symmetry axis and transmits radially downward. The principal stress difference in the rock surrounding the roadway gradually decreases as the distance from the upper coal pillar increases and can be ranked in the following order: left rib > roof > right rib. (2) The minimum principal stress difference zones are located at the center of the left and right “spirals,” which are obliquely below the edge of the upper coal pillar. This is an ideal position for the lower coal seam roadway. (3) The shallowness of the roadway, a small stress concentration coefficient, high level of coal cohesion, large coal internal friction angle, and appropriate lengthening of the working face of the upper coal seam are conducive to the stability of the lower coal seam roadway. (4) Through bolt (cable) support, borehole pressure relief, and pregrouting measures, the roof-to-floor and rib-to-rib convergence of the 13313 return airway is significantly reduced, and the stability of the rock surrounding the roadway is substantially improved. This research provides a theoretical basis and field experience for stabilizing the lower coal seam roadways in close-distance coal seams.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yong Zhang ◽  
Jinkun Yang ◽  
Jiaxuan Zhang ◽  
Xiaoming Sun ◽  
Chen Chen ◽  
...  

Mining in close distance coal seams (CDCSs) is frequently associated with engineering disasters because of the complicated nature of stress distribution within CDCSs. In order to establish a layout of a roadway to minimize the occurrence of disasters associated with mining CDCS, here the spatial and temporal evolution of stress distribution during the multiworking face mining of a CDCS was explored through numerical simulation based on the engineering and geological conditions of the Nantun Coal Mine. The numerical simulation results indicate that, after the extraction of adjacent multiple working faces, the spatial distribution of stress can be characterized with areas of increased, reduced, and intact stress. The superposed stress of inclined seams that are very close to each other propagates through coal pillars in the bottom floor, and this propagation follows neither the line along the axis of the coal pillar nor the line perpendicular to the direction of the floor. It instead propagates along a line angled with the axis of the coal pillar. The roadway can be arranged in the area with reduced stress, to improve its the stability. Based on the computed spatial and temporal evolution of stress, an optimized layout of roadway was proposed. This layout features a reasonable interval between the mining roadway and a minimal proportion of increased stress areas along the mining roadway and is aligned with geological structures.


2017 ◽  
Vol 36 (5) ◽  
pp. 1265-1278 ◽  
Author(s):  
Wei Zhang ◽  
Dongsheng Zhang ◽  
Dahong Qi ◽  
Wenmin Hu ◽  
Ziming He ◽  
...  

The primary problem needed to be solved in mining close coal seams is to understand quantitatively the floor failure depth of the upper coal seam. In this study, according to the mining and geological conditions of close coal seams (#10 and #11 coal seams) in the Second Mining Zone of Caocun Coal Mine, the mechanical model of floor failure of the upper coal seam was built. Calculation results show that the advanced abutment pressure caused by the mining of the upper coal seam, resulted in the floor failure depth with a maximum of 26.1 m, which is 2.8 times of the distance between two coal seams. On this basis, the mechanical model of the remaining protective coal pillar was established and the stress distribution status under the remaining protective coal pillar in the 10# coal seam was then theoretically analysed. Analysis results show that stress distribution under the remaining protective coal pillar was significantly heterogeneous. It was also determined that the interior staggering distance should be at least 4.6 m to arrange the gateways of the #209 island coalface in the lower coal seam. Taken into account a certain safety coefficient (1.6–1.7), as well as reducing the loss of coal resources, the reasonable interior staggering distance was finally determined as 7.5 m. Finally, a novel method using radon was initially proposed to detect the floor failure depth of the upper coal seam in mining close coal seams, which could overcome deficiencies of current research methods.


2016 ◽  
Vol 49 (11) ◽  
pp. 4407-4422 ◽  
Author(s):  
An-ye Cao ◽  
Lin-ming Dou ◽  
Chang-bin Wang ◽  
Xiao-xiao Yao ◽  
Jing-yuan Dong ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhe Xiang ◽  
Nong Zhang ◽  
Deyu Qian ◽  
Zhengzheng Xie ◽  
Chenghao Zhang ◽  
...  

Roadways in thick coal seams are widely distributed in China. However, due to the relatively developed cracks and brittleness of coal, the support failure of thick-coal-seam roadways frequently occurs. Therefore, the study of bolt failure characteristics and new anchoring technology is very important for the safety control of thick-coal-seam roadways. Based on field observations, the failure mechanism of selected roadway failures under distinct conditions at three representative coal mines in eastern and western China was analyzed. Recommendations are provided for roadway safety control. The results show that the strength and dimension of the anchoring structure in the coal roof of thick-coal-seam roadways are the decisive factors for the resistance of the roadway convergence and stress disturbance. The thick anchoring structure in the roof constructed by flexible long bolts can effectively solve the problem of support failure caused by insufficient support length of traditional rebar bolts under the condition of extra-thick coal roof and thick coal roof with weak interlayers. The concepts and techniques presented in the paper provide a reference for the design of roadway support under similar geological conditions and dynamic load.


2012 ◽  
Vol 616-618 ◽  
pp. 402-405 ◽  
Author(s):  
Hong Chun Xia ◽  
Guo Sheng Gao ◽  
Bin Yu

According to the specific geological conditions in themulti-layer worked-out areas of Yongding coal seam, by the methods of integration of theoretic analysis, numerical value calculation and so on, we studied movement law of Overlaying Strata and influence of coal pillar in Coal seam mining, obtained the basic law of the overlying strata movement in multiplayer, provides a theoretical basis for the safe and efficient exploitation of the success of multiplayer. Many mining area in China is mining of closed distance coal seam group, By the impact of coal seam in the overlying, face and the tunnel roof structure will be different injury in sub-coal seam mining, Roof structure has changed greatly, even damage and easily take the roof leakage, When the the goaf communication with the overlying coal seams, caused by the induced secondary disasters such as face air leakage, Therefore, exploitation of the law of motion of the overlying strata in the multiplayer is a pressing problem. Exploitation multiplayer seam few theoretical and technical foundation at home and abroad, affecting the validity of the mining, rationality. although a lot of research on theory and technology of coal mining over the years[1~5], But it was not able to an overall comprehensive analysis of upper goaf adjacent goaf and overlying the coal pillar and present mining face, create a dynamic structural mechanics model, which is likely to cause the occurrence of disasters.


2013 ◽  
Vol 807-809 ◽  
pp. 2393-2397
Author(s):  
Ai Qing Liu

The principle of roadway layout is in the low stress zone. Roadway will be difficult to support due to the lower seam face in the close multi-seam is affected by dynamic pressure of the upper seam face mining. The distribution of abutment pressure after the upper seam face mining were analyzed,concluded that: The layout of lower seam roadway should avoid the stress concentration area of residual coal pillar; Stress concentration of the coal pillar is related with mining order, and stress concentration degree is higher in the first mining side of the coal pillar; when the upper coal seam is gob, the layout of the roadway in the lower coal seam with the pattern of homodromous alternate interior layout will be easy to support.


2019 ◽  
Vol 6 (4) ◽  
pp. 181817 ◽  
Author(s):  
Fangtian Wang ◽  
Cun Zhang

Highwall mining (HWM) technology is an efficient method for exploiting residual coal resources in Chinese open-pit coal mines. However, on-site personnel and equipment can be damaged by the instability of the highwall mining residual coal pillars and subsidence of final end-walls. This paper considers the geological conditions of an open-pit mine in Shendong Coal Field (China) in order to prevent overlying rock fall accidents; the Mark-Bieniawski formula and the FLAC3D numerical simulation are used to analyse reasonable coal pillar widths outside and under the road, which were determined to be 1.7 m and 1.3 m, respectively. Using the EBH132 cantilever excavator for remote control mining, the field experiment shows that the recovery ratio of highwall residual coal resources was over 67%; hence, safety, efficiency and high recovery ratio of highwall mining were achieved for the residual coal resources of an open-pit mine.


Sign in / Sign up

Export Citation Format

Share Document