Experimental Study on High-Speed Milling Performance of 316 Stainless Steel

2010 ◽  
Vol 33 ◽  
pp. 408-412 ◽  
Author(s):  
Can Liu ◽  
J.Q. Wu ◽  
W.F. Zheng ◽  
G.H. Li ◽  
Guang Yu Tan

In order to obtain the variational regularity of force in high-speed milling 316 stainless steel with carbide tools, an orthogonal milling test was done in machining center, and force signal was processed and analysed using Matlab software. Spectrum analysis showed the energy of horizontal force in high-speed milling transfered to the harmonic frequency, variance analysis showed that both of the axial depth of cut and the feed significantly affected the absolute mean of horizontal force, while the effect of speed was insignificant, indicating it be best to adopt milling parameters as small depth of cut, small feed and high speed. The results of this study can be used to guide high-speed milling of 316 stainless steel.

2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2014 ◽  
Vol 541-542 ◽  
pp. 785-791 ◽  
Author(s):  
Joon Young Koo ◽  
Pyeong Ho Kim ◽  
Moon Ho Cho ◽  
Hyuk Kim ◽  
Jeong Kyu Oh ◽  
...  

This paper presents finite element method (FEM) and experimental analysis on high-speed milling for thin-wall machining of Al7075-T651. Changes in cutting forces, temperature, and chip morphology according to cutting conditions are analyzed using FEM. Results of machining experiments are analyzed in terms of cutting forces and surface integrity such as surface roughness and surface condition. Variables of cutting conditions are feed per tooth, spindle speed, and axial depth of cut. Cutting conditions to improve surface integrity were investigated by analysis on cutting forces and surface roughness, and machined surface condition.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


2010 ◽  
Vol 458 ◽  
pp. 331-336
Author(s):  
Wei Min Gan ◽  
Xi Lian Xie ◽  
Bo Xu ◽  
W.B. Huang

For hard machining metal materials with high rigidity,high strength or high toughness, the method of electrochemical mechanical complex machining is proposed. A NC high-speed machine tool for carving and milling is transformed into a NC electrochemical mechanical complex machine tool in which complex tool-electrodes, particular tool holders, a new rotary table, a protective flume for electrolyte and pipelines are made and assembled, so that machine tool can achieve a series of machining, such as milling, drilling, grinding and polishing by utilizing complex tool-electrode motion generated by NC. For 304 stainless steel orthogonal experiment is carried out, and five principal process parameters that are spindle rev, feed speed, voltage, pressure of electrolyte and depth of cut, are investigating in the method of NC Electrochemical Mechanical complex machining. The optimization process parameters are obtained.


2013 ◽  
Vol 69 (9-12) ◽  
pp. 2191-2213 ◽  
Author(s):  
A. Maurel-Pantel ◽  
M. Fontaine ◽  
G. Michel ◽  
S. Thibaud ◽  
J. C. Gelin

2010 ◽  
Vol 44-47 ◽  
pp. 280-283
Author(s):  
Zhen Yu Zhao ◽  
Li Xin Huang ◽  
Yong Shan Xiao ◽  
Bai Liu

In the manufacturing industry, high speed milling plays a very important role. The paper introduced a number of essential core component of the key technologies in high speed machining center such as powerful computer numerical control systems, motion control card, post –processing method, processed trajectory control technology (Look Ahead) and high speed processing of programming. The speed control, post processing and look-ahead control are focused on considering, and the corresponding improved methods are brought forward.


2010 ◽  
Vol 33 ◽  
pp. 6-10
Author(s):  
Wei Feng Zheng ◽  
Jing Quan Wu ◽  
Can Liu ◽  
Guang Hui Li ◽  
Guang Yu Tan

Through the orthogonal test in which stainless steel 316 was milled with high speed by solid cemented carbide end cutter, the milling force was measured. By multiple linear regression method, the prediction formula of the milling forces of stainless steel 316 was found. In addition, this study validates to significant degree of the formula meeting the actual condition, which can provide a reference to better selection of cutting parameter in advance and the design of high-speed milling cutter.


2009 ◽  
Vol 76-78 ◽  
pp. 624-629 ◽  
Author(s):  
Shan Shan Sun ◽  
W.X. Tang ◽  
H.F. Huang ◽  
Xi Qing Xu

A dynamics model is established considering gyroscopic effects due to high speed rotating spindle-tool system in ultra-high speed milling (USM). The proposed method for predicting stability enables a new 3D stability lobe diagram to be developed in the presence of gyroscopic effects, to cover all the intermediate stages of spindle speed. The influences of the gyroscopic effects on dynamics and stability in USM are analyzed. It is shown that the gyroscopic effects lower the resonance response frequencies of the spindle-tool system and the stable critical depth of cut in ultra-high speed milling.


2011 ◽  
Vol 418-420 ◽  
pp. 1141-1147
Author(s):  
Yong Liu ◽  
Li Tang Zhang ◽  
Zhi Hong Xu

High-speed milling is recognized as one of rapidly development machining methods. The article gives details of machining experiments with different aluminum alloys. Through a lot of single factor experiments and the orthogonal multi-factor experiments, and also use method of semi-artificial thermocouple. This paper mainly studies influence of surface roughness and residual stress with changed rotate speed, tooth load and radial depth of cut, and changed law of processing temperature for rotate speed. Though experiments shows that enhancing rotate speed may reduce surface roughness and residual stress within certain limits and the result of experiments is not agree with Carl Salomon’s theory.


2009 ◽  
Vol 69-70 ◽  
pp. 59-63 ◽  
Author(s):  
Cheng Yong Wang ◽  
De Weng Tang ◽  
Zhe Qin ◽  
Z.G. Chen ◽  
Ying Ning Hu ◽  
...  

When the pocket in die and mould is machined by high speed milling (HSM), the cutting forces increase and vibration fluctuates at the pocket corner because of the sudden change of cutting direction in general. It will cause serious wear and possible breakage of cutting tool, and poor quality of parts. By means of experiments, the cutting forces and vibration at the pocket corner with different HSM conditions are measured. The results show that the sharper pocket corner, higher cutting speeds, larger feed rate per tooth and radial depth of cut, will result in increasing of cutting forces and vibration amplitude. Thus, it will lead to be unstable during the process of high speed milling pocket corner.


Sign in / Sign up

Export Citation Format

Share Document