LPG/Gasoline Dual-Fuel Engine Design and Investigation about its Performance

2013 ◽  
Vol 333-335 ◽  
pp. 2025-2029
Author(s):  
Wei Liu ◽  
Sheng Ji Liu ◽  
Xin Kuang ◽  
Jian Sun

In order to burning LPG and gasoline and dual fueled (LPG and gasoline) in the same engine, a new multi-function engine was refitted and designed based on 188F gasoline, mutative effects on the power and emission performance when burning those three kind fuel were investigated by the engine operated with the US EPA Phase-Ⅱ. Three schemes for the carburetor throat were designed. Balanced of the power and economy performance, when the diameter of the carburetor throat is 23mm, the performance was the best. By carrying engine performance test and the combustion process analysis, the results showed that: when the throttle was full opened, the power of burning only gasoline was 7.97kW, 0.5 kW and 0.28kW higher than burning LPG and dual –fuel. Burning gasoline pressure curve with the crank Angle siege area is the largest. As the emission test shows, when separately burning LPG and gasoline and dual fueled, the tendency of the excess air coefficient and the emission characteristics with the load change are same. When using LPG and dual-fuel, compared with burning gasoline, HC and NOx emission were reduced.

2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Wang Xiaogang ◽  
Liu Bolan ◽  
Yu Xiyang ◽  
Yan Chao ◽  
Yu Fei ◽  
...  

Abstract Spark ignition aeropiston engines have good prospects due to light weight and high power to weight ratio. Both gasoline and kerosene can be utilized on these engines by using either traditional port fuel injection (PFI) or the novel air-assisted fuel injection (A2FI). In this article, the effects of different fuels and injection methods on the performance of a four-cylinder opposed aeropiston engine were studied. The spray performance test rig and the engine performance test rig were established. First, the influence of different injection methods on engine performance were compared, which indicated that A2FI is superior to PFI in engine power and starting performance. Furthermore, the fuel performance comparison by using A2FI was conducted, which demonstrates that kerosene is inferior to gasoline in terms of spray characteristics and power performance. Finally, detailed working characteristics of A2FI system using kerosene were studied, which indicated that the stable and reliable operation of the spark-ignition operation can be realized and the kerosene's spark-ignition combustion process can be optimized similar to that of gasoline. Results shows that the use of kerosene combined with A2FI is the best technical way to achieve ideal working process of the spark ignition aeropiston engine.


2021 ◽  
Vol 14 (2) ◽  
pp. 125-129
Author(s):  
Gatot Setyono ◽  
Navik Kholili

Ethanol is an alternative fuel to replace fossil fuels. Ethanol's high octane value can substitute for power in spark-ignition engines (SI). Gasoline mixed with ethanol will reduce the calorific value generated and intensify the combustion process in the combustion chamber. Through the engine performance test, we can find out the increase in the performance of the SI engine. Several essential variables can improve engine performance, such as gasoline-ethanol variations, iridium spark plugs, and hydroxy gas generators (HHO). This research uses an experimental method by utilizing gasoline (octane-92)-ethanol variations (35%, 45%, and 55% v/v) with the intake of hydroxy gas during the combustion process. The SI automatic transmission engine has a capacity of 124.8 cubic centimeters (one cylinder-four stroke), a compression ratio of 11/1, fuel injection, and iridium spark plugs. Engine performance test using chassis dyno test with engine speed variations of 4000-9000 rpm. This study resulted in optimal performance on a 55% increase in gasoline-ethanol mixture with an intensify in output-power, pressure, and thermal efficiency at an engine-speed of 8000 rpm. It is contrary to the specific fuel consumption has decreased.


Author(s):  
Paul Lee ◽  
Ligong Yang ◽  
Caner Demirdogen

Computer-Aided Engineering (CAE) tools have been widely used in the design of automotive components and systems. Methods, procedures and measurables for analyses involving Internal Combustion Engine (ICE) components are well-defined and well developed. Comparatively, significantly less attention has been paid to the design and analysis of test cells. Better designed test cells will lead to increased test cell availability and thus also increases engine performance test opportunities. This trend was observed in Cummins Inc. where CAE-guided test cell designs improved test-cell availability and rate of engine development. Here, improved conversion efficiencies in test cell Selective Catalyst Reduction (SCR) modules were predicted using Computational Fluid Dynamics (CFD) tools, and validated against data collected from the test cells. The resultant improvements resulted in dramatic increases in test cell up-time. This paper documents how CAE tools commonly used in engine design were successfully expanded to aid the design of Cummins Inc. test cells. It presents the CFD methods that were used in this analysis, compares CFD predictions to actual conversion efficiencies in the SCR module, and also proposes a set of analysis tasks and methods that can be applied to improve test cell design and performance in the future.


2014 ◽  
Vol 709 ◽  
pp. 78-82
Author(s):  
Xu Dong Zhang ◽  
Yin Nan Yuan ◽  
Jia Yi Du

This paper has studied the influence of the different ratio on combustion process and emissions of air premixed methanol/diesel dual fuel engine. The research was based on 4B26 diesel engine, and the 3-D numerical simulation on combustion process and emissions of the diesel engine with intake premixed methanol was carried out using AVL FIRE software. The study showed that,with the compression ratio reducing,the ignition delay period prolonged, and the ignition timing delayed, the maximum firing pressure, the peak of pressure rise rate and the maximum combustion temperature in cylinder decreased, the crank angle postponed, the NOX emission decreased and the Soot emission increased obviously.


Author(s):  
Christoph Redtenbacher ◽  
Constantin Kiesling ◽  
Maximilian Malin ◽  
Andreas Wimmer ◽  
Jose V. Pastor ◽  
...  

Interest is growing in using fully flexible diesel-gas dual fuel engines for power generation and propulsion on land and sea. Benefits such as the flexibility to adapt the type of fuel to the market situation, fail-safe operation and lower NOx emissions than diesel engines are convincing arguments for engine operators. However, diesel-gas engine concepts still suffer from lower efficiency than state-of-the-art monovalent diesel engines and spark ignited gas engines when operated in the corresponding fuel mode. To meet stringent NOx emission legislation, high diesel substitution rates are necessary, which in turn often lead to poor combustion stability. Especially with these small diesel fractions, the challenge remains to ensure stable ignition, fast combustion of the air-fuel mixture and low hydrocarbon emissions. The aim of this paper is to identify and investigate the potential and limitations of diesel-gas combustion concepts for high speed large engines operated in gas mode with very small amounts of pilot fuel (< 5 % diesel fraction1). Experimental tests were carried out on a flexible single cylinder research engine (swept volume approximately 6 1) equipped with a common rail system. Various engine configurations and operating parameters were varied and the effects on the combustion process were analyzed. The results presented in this paper include a comparison of the performance of the investigated dual fuel concept to those of a state-of-the-art monovalent gas engine and a state-of-the-art monovalent diesel engine. Evaluation reveals that certain limiting factors exist that prevent the dual fuel engine from performing as well as the superior gas engine. On the other hand, the potential is already present for the dual fuel concept to compete with the diesel engine. Since the injection of pilot fuel is of major importance for flame initialization and thus for the main combustion event of the dual fuel engine, optical investigations in a spray box, measurements of injection rates and 3D-CFD simulation were conducted to obtain even more detailed insight into these processes. A study on the influence of the diesel fraction shows that diminishing the diesel fraction from 3 % to lower values has a significant impact on engine performance because of the effects of such a reduction on injection, ignition delay and initial flame formation. An investigation of the influence of the injection timing reveals that with diesel fractions of ≤ 1.5 %, the well-known relationship between the injection timing and combustion phasing of conventional engine concepts is no longer valid. The presented results illustrate which operating strategy is beneficial for engine performance in terms of low NOx emissions and high efficiency. Moreover, potential measures can be derived which allow for further optimization of the diesel-gas combustion process.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph Redtenbacher ◽  
Constantin Kiesling ◽  
Maximilian Malin ◽  
Andreas Wimmer ◽  
José V. Pastor ◽  
...  

The aim of this paper is to identify and investigate the potential and limitations of diesel–gas combustion concepts for high speed large engines operated in gas mode with very small amounts of pilot fuel (<5% diesel fraction). Experimental tests were carried out on a flexible single cylinder research engine (displacement 6.24 dm3) equipped with a common rail system. Various engine configurations and operating parameters were varied and the effects on the combustion process were analyzed. The results presented in this paper include a comparison of the performance of the investigated dual fuel concept to those of a state-of-the-art monofuel gas engine and a state-of-the-art monofuel diesel engine. Evaluation reveals that certain limiting factors exist that prevent the dual fuel engine from performing as well as the superior gas engine. At the same NOx level of 1.3 g/kWh, the efficiency of the dual fuel engine is ≈3.5% pts. lower than that of the gas engine. This is caused by the weaker ignition performance of the injected pilot fuel compared to that of the gas scavenged prechamber of the gas engine. On the other hand, the dual fuel concept has the potential to compete with the diesel engine. The dual fuel engine can be operated at the efficiency level of the diesel engine yet with significantly lower NOx emissions (3.5 g/kWh and 6.3 g/kWh, respectively). Since the injection of pilot fuel is of major importance for flame initialization, and thus for the main combustion event of the dual fuel engine, optical investigations in a spray box, measurements of injection rates, and three-dimensional (3D) computational fluid dynamics (CFD) simulation were conducted to obtain even more detailed insight into these processes. A study on the influence of the diesel fraction shows that diminishing the diesel fraction from 3% to lower values has a significant impact on engine performance because of the effects of such a reduction on injection, ignition delay, and initial flame formation. The presented results illustrate which operating strategy is beneficial for engine performance in terms of low NOx emissions and high efficiency. Moreover, potential measures can be derived which allow for further optimization of the diesel–gas combustion process.


1998 ◽  
Vol 120 (10) ◽  
pp. 62-68 ◽  
Author(s):  
Steven Ashley

This article discusses the three federally funded projects that are underway to develop new rocket engines that can make it more affordable to send payloads into orbits. The new RS-68 propulsion system is Rocketdyne's entry in competition to power the US Air Force's new heavy-lift booster. The most ambitious of the new propulsion system designs is Rocketdyne's XRS-2200 linear aerospike engine, a seemingly nozzle-less oxygen/hydrogen powerplant that is designed to send the autonomously controlled NASA X-33 lifting body into orbit. The X-33 is being developed by Lockheed Martin Skunk Works, Palmdale, CA. The key for new launch vehicles, whether they're expendable or reusable, is to get the costs down. The article also highlights that the payload that can be lofted by a launch vehicle depends in large part on engine performance and the ratio of propellant to structural weight. Bell nozzles are designed to offer the best compromise of shape and length for a vehicle and flight path. Rocketdyne's R-68 engine is to be 17 feet tall and 8 feet wide at the base. The key to the R-68 engine design was the selection of hydrogen as the propellant rather than kerosene.


1994 ◽  
Vol 116 (4) ◽  
pp. 675-686 ◽  
Author(s):  
Francis T. Connolly ◽  
Giorgio Rizzoni

The need for improvements in the on-line estimation of engine performance variables is greater nowadays as a result of more stringent emission control legislation. There is also a concurrent requirement for improved on-board diagnostics to detect different types of malfunctions. For example, recent California Air Resources Board (CARB) regulations mandate continuous monitoring of misfires, a problem which, short of an expensive measurement of combustion pressure in each cylinder, is most directly approached by estimating individual cylinder torque. This paper describes the theory and experimental results of a method for the estimation of individual cylinder torque in automative engines, with the intent of satisfying the CARB misfire detection requirements. Estimation, control, and diagnostic functions associated with automotive engines involve near periodic processes, due to the nature of multi-cylinder engines. The model of the engine dynamics used in this study fully exploits the inherent periodicity of the combustion process in the crank angle domain in order to obtain a simple deconvolution method for the estimation of the mean torque produced by each cylinder during each stroke from a measurement of crankshaft angular velocity. The deconvolution is actually performed in the spatial frequency domain, recognizing that the combustion energy is concentrated at discrete spatial frequencies, which are harmonics of the frequency of rotation of the crankshaft. Thus, the resulting deconvolution algorithm is independent of engine speed, and reduces to an algebraic operation in the frequency domain. It is necessary to perform a Discrete Fourier Transform (DFT) on the measured angular velocity signal, sampled at fixed uniform crank angle intervals. The paper discusses the model used in the study, and the experimental validation of the algorithm, which has been implemented in real time using a portable computer and has been tested extensively on different production vehicles on a chassis dynamometer and on the road.


Sign in / Sign up

Export Citation Format

Share Document