Concentration Distribution of Chloride Ion in Cracked Concrete

2013 ◽  
Vol 351-352 ◽  
pp. 1581-1584
Author(s):  
Bo Yu ◽  
Zhong Hui Huang ◽  
Ming Wu ◽  
Hui Liang Sun ◽  
Lu Feng Yang ◽  
...  

Cracks provide diffusion path for chloride ions transport from the external environment into the concrete, resulting in the durability degradation of concrete structures. In this paper, the boundary condition of cracked concrete and chloride diffusion coefficient in crack were analyzed. The time-dependent chloride diffusion model was established based on the time-dependent chloride diffusion coefficient and the Ficks second law of diffusion. The influence of crack on the concentration distribution of chloride ion in cracked concrete was quantificationally investigated.

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5717
Author(s):  
Xiaokang Cheng ◽  
Jianxin Peng ◽  
C.S. Cai ◽  
Jianren Zhang

The existence of axial and lateral compressive stress affect the diffusion of chloride ions in concrete will lead to the performance degradation of concrete structure. This paper experimentally studied the chloride diffusivity properties of uniaxial and biaxial sustained compressive stress under one-dimensional chloride solution erosion. The influence of different sustained compressive stress states on chloride ion diffusivity is evaluated by testing chloride concentration in concrete. The experiment results show that the existence of sustained compressive stress does not always inhibit the diffusion of chloride ions in concrete, and the numerical value of sustained compressive stress level can affect the diffusion law of chloride ions in concrete. It is found that the chloride concentration decreases most when the lateral compressive stress level is close to 0.15 times the compressive strength of concrete. In addition, the sustained compressive stress has a significant effect on chloride ion diffusion of concrete with high water/cement ratio. Then, the chloride diffusion coefficient model under uniaxial and biaxial sustained compressive stress is established based on the apparent chloride diffusion coefficient. Finally, the results demonstrate that the chloride diffusion coefficient model is reasonable and feasible by comparing the experimental data in the opening literature with the calculated values from the developed model.


2020 ◽  
Vol 10 (8) ◽  
pp. 2972 ◽  
Author(s):  
Taegyu Lee ◽  
Jaehyun Lee

The mixing proportions of concrete were examined with regard to the durability performance and early strength in coastal areas. Research was conducted to improve the C24 mix (characteristic strength of 24 MPa). C35 concrete (characteristic strength of 35 MPa) was selected as a comparison group, as it exhibits the minimum proposed strength criterion for concrete in the marine environment. To secure the early strength of the C24 concrete, 50% of the total ordinary Portland cement (OPC) binder was replaced with early Portland cement (EPC); and to provide durability, 20% was substituted with ground granulated blast-furnace slag (GGBS). In addition, a polycarboxylate (PC)-based superplasticizer was used to reduce the unit water content. The compressive strength, chloride ion diffusion coefficient, chloride penetration depth, and pore structure were evaluated. After one day, the compressive strength improved by 40% when using EPC and GGBS, and an average increase of 20% was observed over 91 days. EPC and GGBS also reduced the overall porosity, which may increase the watertightness of concrete. The salt resistance performance was improved because the rapid early development of strength increased the watertightness of the surface and immobilization of chloride ions, decreasing the chloride diffusion coefficient by 50%.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4156 ◽  
Author(s):  
Eunjong Ahn ◽  
Seongwoo Gwon ◽  
Hyunjun Kim ◽  
Chanyoung Kim ◽  
Sung-Han Sim ◽  
...  

This study aims to explore the applicability of diffuse ultrasound to the evaluation of water permeability and chloride ion penetrability of cracked concrete. Lab-scale experiments were conducted on disk-shaped concrete specimens, each having a different width of a penetrating crack that was generated by splitting tension along the centerline. The average crack width of each specimen was determined using an image binarization technique. The diffuse ultrasound test employed signals in the frequency range of 200 to 440 kHz. The water flow rate was measured using a constant water-head permeability method, and the chloride diffusion coefficient was determined using a modified steady-state migration method. Then, the effects of crack width on the diffusion characteristics of ultrasound (i.e., diffusivity, dissipation), water flow rate, and chloride diffusion coefficient are investigated. The correlations between the water flow rate and diffuse ultrasound parameters, and between the chloride diffusion coefficient and diffuse ultrasound parameters, are examined. The results suggest that diffuse ultrasound is a promising method for assessing the water permeability and chloride ion penetrability of cracked concrete.


2017 ◽  
Vol 726 ◽  
pp. 547-552
Author(s):  
Zheng Ren ◽  
Lian Zhen Xiao ◽  
Wen Chong Shi

A rapid chloride ion diffusion coefficient measurement (RCM) was used in this study. The influence of water-cement ratios of 0.30, 0.35 and 0.40 at various ages (3, 7, 14, 28 and 56 days) on chloride ion diffusion coefficient of the concretes and pastes was studied and analyzed. The results show that, with the increase of curing ages, the chloride ion diffusion coefficient of different water-cement ratio of each specimen is decreased. In the early age, the chloride ion diffusion coefficient of the paste with the water-cement ratio of 0.40 is 2~3 times of the paste with water-cement ratio of 0.30 and 0.35, and with the increase of curing age, this difference is gradually decreased. Additionally, the chloride ion diffusion coefficient of the cement paste is 1~2 times of the concrete with same water-cement ratio at different ages. Based on the actual experiment boundary conditions, the process of chloride ions diffusion and permeability was simulated by COMSOL software, and the simulation result was analyzed to predict the permeability of concrete.


2021 ◽  
Vol 12 (3) ◽  
pp. 88
Author(s):  
Md. Shafiqul Islam ◽  
Sayem Ahmeed ◽  
Sumon Kumar Ghosh

As for the communication between concrete and the particles, the surface shows Cl− shock and Na adsorption. With expanded particle focus, the solid adsorption capacity for Cl− is upgraded as a result of a detailed overview of the dynamic molecular simulation studies examining the chloride diffusion coefficient. Different characteristics of the diffusion process, including molecular models, system-size effects, temperature, and pressure conditions, and the type of protection, are discussed. This paper focus on Molecular Dynamic Simulation to determine the diffusion coefficient of chloride ion and water molecules in concrete. The diffusion coefficient for NaCl salt obtained 6.60178x10-10m2/s and the diffusion coefficient for CaCl2 salt obtained 7.29305x10-10m2/s. So, the average chloride diffusion coefficient 6.9475x10-10m2/s. Diffusion coefficient obtained from graph 5.562x10-10m2/s. Diffusion coefficients for water molecules for NaCl solution are 6.125x10-10m2/s, 6.85x10-10m2/s, 1.044x10-10m2/s, 8.525x10-10m2/s, 6.25x10-10m2/s. diffusion coefficient of water molecules in CaCl2 solution are 4.5x10-10m2/s, 6.725x10-10m2/s, 1.254x10-10m2/s, 7.725x10-10m2/s, 1.3x10-10m2/s. Average value obtained for water molecule diffusion are 4.545x10-10m2/s, 7.4062x10-10m2/s and 1.149x10-10m2/s. This diffusion of chloride effects the binding of water in concrete pore.


2020 ◽  
Vol 10 (18) ◽  
pp. 6271 ◽  
Author(s):  
Jun Liu ◽  
Jiaying Liu ◽  
Zhenyu Huang ◽  
Jihua Zhu ◽  
Wei Liu ◽  
...  

This paper experimentally studies the effects of fly ash on the diffusion, bonding, and micro-properties of chloride penetration in concrete in a water soaking environment based on the natural diffusion law. Different fly ash replacement ratio of cement in normal concrete was investigated. The effect of fly ash on chloride transportation, diffusion, coefficient, free chloride content, and binding chloride content were quantified, and the concrete porosity and microstructure were also reported through mercury intrusion perimetry and scanning electron microscopy, respectively. It was concluded from the test results that fly ash particles and hydration products (filling and pozzolanic effects) led to the densification of microstructures in concrete. The addition of fly ash greatly reduced the deposition of chloride ions. The chloride ion diffusion coefficient considerably decreased with increasing fly ash replacement, and fly ash benefits the binding of chloride in concrete. Additionally, a new equation is proposed to predict chloride binding capacity based on the test results.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Seung-Yup Jang ◽  
Subbiah Karthick ◽  
Seung-Jun Kwon

The significance of concrete durability increases since RC (Reinforced Concrete) structures undergo degradation due to aggressive environmental conditions, which affects structural safety and serviceability. Steel corrosion is the major cause for the unexpected failure of RC structures. The main cause for the corrosion initiation is the ingress of chloride ions prevailing in the environment. Hence quantitative evaluation of chloride diffusion becomes very important to obtain a chloride diffusion coefficient and resistance to chloride ion intrusion. In the present investigation, 15 mix proportions with 3 water-to-binder ratios (0.37, 0.42, and 0.47) and 3 replacement ratios (0, 30, and 50%) were prepared for HPC (high-performance concrete) with fly-ash and ground granulated blast furnace slag. Chloride diffusion coefficient was measured under nonstationary condition. In order to evaluate the microstructure characteristics, porosity through MIP was also measured. The results of compressive strength, chloride diffusion, and porosity are compared with electrical charges. This paper deals with the results of the concrete samples exposed for only 2 months, but it is a part of the total test plan for 100 years. From the work, time-dependent diffusion coefficients in HPC and the key parameters for durability design are proposed.


2012 ◽  
Vol 174-177 ◽  
pp. 1199-1203
Author(s):  
Xin'gang Wang ◽  
Fang Bin Chen ◽  
Xu Na Ye ◽  
Wei Qin Zhang

Reinforced concrete segment is the main body of structure in shield tunnel, and its durability has an important effect on shield tunnel. The durability of High Durability Reinforced Concrete Segment (abbr. HDRC Segment) was investigated by impermeability of single segment and chloride diffusion coefficient of core-drilling. HDRC Segment had high compact cover, concrete cover and high strength structural-layer. Permeable height of HDRC Segment was approximately 0.5 mm when Keeping 4 hours in the constant water pressure of 0.8 MPa, and chloride diffusion coefficient of HDRC Segment was only 4.9×10-13m2/s by NEL method. As for Water impermeability and chloride ion penetration resistance, HDRC Segment is far superior to those of conventional Reinforced Concrete Segment (abbr. conventional RC Segment). It is advantageous to increase durability of HDRC Segment and service life of tunnel engineering.


Sign in / Sign up

Export Citation Format

Share Document