Research on the Seismic Behavior of Concrete-Filled Steel Tubular Column and Steel Beam Joint

2012 ◽  
Vol 204-208 ◽  
pp. 2528-2532
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

Joints are the forces cross points of members, and the bearing modes are more complex than other members, especially under earthquake action, so the rationality of joints are directly related to the safe reliability of structure. By the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: the energy dissipation capacity of joints is much better, the degradation of strength and stiffness are slowly when reached the ultimate strength, and the ductility is also good.

2013 ◽  
Vol 351-352 ◽  
pp. 174-178
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

With the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: when reached the ultimate strength, the strength degradation and stiffness degradation of joints are slowly and the ductility is also good, the energy dissipation capacity of joints is much better.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040004
Author(s):  
Li Sun ◽  
Zeyu Yang ◽  
Qiao Jin ◽  
Weidong Yan

Traditional reinforced concrete columns have demonstrated poor seismic performance especially in corrosive environment as the reinforcement bars experience severe corrosion under such conditions. To overcome the problem of steel corrosion, glass fiber-reinforced polymer (GFRP) reinforced concrete columns have gained significant attention in recent years. However, the seismic performance of GFRP reinforced concrete column is not well understood yet. One of the main challenges associated with the use of GFRP bars is its brittle behavior. Therefore, it is necessary to investigate the mechanical properties and failure modes of GFRP reinforced concrete structures under seismic action. In this research, the seismic behavior of GFRP reinforced concrete columns and conventional columns under different axial compression ratios are analyzed by low-cycle repeated pseudo-static loading tests. As a result, the deformation and the seismic energy dissipation capacity of GFRP reinforced concrete columns are investigated and discussed. Furthermore, the failure mechanism of GFRP bar structure is studied to provide the basis for improving the seismic design method of GFRP reinforced concrete structure and modifying the code for seismic design. In addition, the influence of axial compression ratio on the seismic behavior of full GFRP reinforced concrete columns is investigated. The results of this experiment demonstrate that with the increase of axial compression ratio, the ultimate bearing capacity of GFRP reinforced concrete columns increases, while the deformation and the cumulative energy dissipation capacity decrease.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhao Yang ◽  
Yong Liu ◽  
Jiajia Li

To study the seismic behavior of RC beam-column joints strengthened with sprayed FRP, five 1 : 2 reduced-scale specimens of joints were tested through quasi-static experiments. The failure modes, hysteretic curves, skeleton curves, strength, deformation, degradation of strength and stiffness, ductility, and energy dissipation capacity were studied. Furthermore, the effect of three main influencing factors including the sprayed FRP thickness, strengthened area, and axial compression ratio was analyzed in this paper as well. The results show that sprayed FRP strengthening can improve the seismic behavior of RC beam-column joints effectively. The increase of sprayed FRP thickness can lead to a better seismic performance for the joints. Strengthening area can affect the bearing capacity obviously. Higher axial compression ratio can increase the bearing capacity and initial stiffness, but it can make the deformation capacity and ductility decreased. The study can provide references to further research on the sprayed FRP material for strengthening of RC beam-column joints.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhen-chao Teng ◽  
Tian-jia Zhao ◽  
Yu Liu

In traditional building construction, the structural columns restrict the design of the buildings and the layout of furniture, so the use of specially shaped columns came into being. The finite element model of a reinforced concrete framework using specially shaped columns was established by using the ABAQUS software. The effects of concrete strength, reinforcement ratio, and axial compression ratio on the seismic performance of the building incorporating such columns were studied. The numerical analysis was performed for a ten-frame structure with specially shaped columns under low reversed cyclic loading. The load-displacement curve, peak load, ductility coefficient, energy dissipation capacity, and stiffness degradation curve of the specially shaped column frame were obtained using the ABAQUS finite element software. The following three results were obtained from the investigation: First, when the strength of concrete in the specially shaped column frame structure was increased, the peak load increased, while the ductility and energy dissipation capacity weakened, which accelerated the stiffness degradation of the structure. Second, when the reinforcement ratio was increased in the specially shaped column frame structure, the peak load increased and the ductility and energy dissipation capacity also increased, which increased the stiffness of the structure. Third, when the axial compression ratio was increased in the structure, the peak load increased, while ductility and energy dissipation capacity reduced, which accelerated the degradation of structural stiffness.


2013 ◽  
Vol 351-352 ◽  
pp. 213-218
Author(s):  
Jun Peng ◽  
Dong Xiu Zhang ◽  
Jian Kang Zhang

By testing the seismic performance of the beams and columns of three SRHC with different axial compression ratios, the paper reveals the influence pattern of the nodes’ stress transfer and distribution, cracks’ appearance and development, member deformation, destruction pattern and mechanism, energy dissipation capacity etc., in SRHC with different axial compression ratios. The test shows that the increase of axial compression ratio postpones the appearance of the diagonal cracks in the nodes area, and slows down moderately the speed of development of the diagonal cracks, and improves the nodes’ energy dissipation capacity and ductility etc. this article studies its crack resistance and bearing capacity only. The purpose of this test is, through the low cyclic loading test of the nodes in the beams and columns of three SRHC with different axial compression ratios, to investigate the axial compression ratio’ influence on the cracks’ appearance, development, destruction pattern and deformation characteristics in the nodes; to analyze of the factors influencing the load-carrying capability; to validate the calculation methods proposed by related studies, which is little studied by foreign countries. This paper, based on the analysis of axial compression ratio test, further validates and improves the theory and methods proposed in the literature.


2014 ◽  
Vol 501-504 ◽  
pp. 1580-1586
Author(s):  
Jian Yang Xue ◽  
Jian Peng Lin ◽  
Hui Ma

The pseudo-static tests were carried out on seven steel reinforced recycled concrete columns. The main parameters of specimens were recycled aggregate replacement ratio, axial compression ratio and volumetric stirrup ratio. The results indicate that the incorporation of recycled aggregate doesnt reduce the horizontal bearing capacity, ductility and the energy dissipation capacity of specimens and has little effect on seismic performance. The seismic performance of steel reinforced recycled concrete column decreases significantly in the high axial compression ratio. The ductility, horizontal bearing capacity and the energy dissipation capacity of the steel reinforced recycled concrete column increase with a rise in the volumetric stirrup ratio. This study provides a reference on the application of the steel reinforced recycled concrete column.


2012 ◽  
Vol 166-169 ◽  
pp. 1152-1156
Author(s):  
Pei Zhen Xu ◽  
Xia Wu ◽  
Na Zhang ◽  
Hou Jian Zhang ◽  
Huan Sen Xing

The hysteretic behaviors of concrete filled steel tube columns under low cyclic loads were analyzed for verification the accumulated energy dissipation performance. The accumulated ductility coefficient influencing factors, such as slenderness ratio, axial compression ratio and sectional steel ratio, were analyzed. It is indicated that these columns have a better energy dissipation capacity. The energy dissipation capacity decreases with the axial compression ratio increasing, but the influence of slenderness ratio and steel ratio to accumulated ductility coefficient is not clear, this is because the influence of difference loading system.


2011 ◽  
Vol 243-249 ◽  
pp. 366-369 ◽  
Author(s):  
Shan Suo Zheng ◽  
Qing Lin Tao ◽  
Yi Hu ◽  
Lei Li ◽  
Zhi Qiang Li

Based on the experiments of 4 SRHSC (steel reinforced high strength concrete) column specimens, which were different in concrete strength, axial compression ratio and spacing of hoop reinforcement, this paper investigates the seismic behavior and flexural strength of SRHSC columns under cyclic lateral loading which is controlled by the displacement. According to the date and phenomenon of experiment, adopting existed theory and foreign codes for composite columns, the failure mode, lateral load-deflection relationship, strength and stiffness deterioration, ductility capacity and energy dissipation capacity of SRHSC columns is analyzed.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yan Dai ◽  
Shaofeng Nie ◽  
Tianhua Zhou ◽  
Chengfeng Xue ◽  
Jingrong Peng

A new type joint of Circular Tubed Steel-Reinforced Concrete (CTSRC) columns was designed in this paper. The structural characteristics, manufacturing process, and mechanical properties of raw materials of the new joint were introduced. In order to simulate the earthquake action, two joint specimens were subjected to low-cycle cyclic loading at the end of the column. Based on the in-depth study of the failure characteristics, load-displacement hysteretic curve, skeleton curve, ductility index, load-strain hysteretic curve in the core area of the joint, energy dissipation performance, strength and stiffness degradation performance, and shear deformation in the core area of the joint during the whole loading process, the seismic behavior of this new type of joint was investigated. The results show that the new joint has reasonable failure characteristics, high bearing capacity, good ductility, excellent seismic energy dissipation performance, and strong resistance to strength and stiffness degradation, which meets the seismic design principle of “strong joint and weak component” and is suitable for the results with special requirements for seismic performance. In addition, preliminary design recommendations were put forward. The research results of this paper can provide a theoretical basis for the application of this kind of new structure.


2011 ◽  
Vol 368-373 ◽  
pp. 183-188 ◽  
Author(s):  
Guo Feng Du ◽  
Chao Ma ◽  
Cheng Xiang Xu

In order to understand the mechanical performance and related tectonic design requirements of the concrete-filled steel tubular joints with special-shaped cross-section , three T-shaped concrete filled steel tubular column joints with exterior diaphragms were manufactured and experimented under cyclic loading. By changing the axial compression ratio of the columns and increasing the width and overhanging length of the stiffening ring, the hysteretic performance and working mechanism of such joints under cyclic loading were studied. The results show that by increasing the width and overhanging length of the stiffening ring, the hysteretic performance, ductility and energy dissipation capacity of joints were obviously improved.


Sign in / Sign up

Export Citation Format

Share Document