Steel Beam-to-Column Connections Using Martensite Shape Memory Alloys

2011 ◽  
Vol 243-249 ◽  
pp. 662-665 ◽  
Author(s):  
Zhen Yu Wu ◽  
Xiao Hui He ◽  
Yao Chun Zhang

The hysteretic performances of steel beam-to-column connections using martensite shape memory alloy (SMA) rods were studied by the experiments. Before the connection test, the material test of Ni-Ti SMA was carried out for the verification of shape memory effect. Meanwhile, the other two type connections (ANGLE and A3) were also tested for comparison. The results showed that connections with SMA rods have excellent energy dissipation capacity, and no strength degradation even subjected to relative rotation of 0.04 rad. It was found that connections with SMA rods possess the higher stiffness and strength than the ANGLE connection, and better ductility than the A3 connection by comparing their hysteretic curves. Large residual deformations of SMA rods can be recovered by application of heat. Retests were performed using heat-straightened rods in the connections, and nearly identical hysteretic behavior was observed as in the case of initial testing.

2013 ◽  
Vol 351-352 ◽  
pp. 174-178
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

With the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: when reached the ultimate strength, the strength degradation and stiffness degradation of joints are slowly and the ductility is also good, the energy dissipation capacity of joints is much better.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1099
Author(s):  
González-Sanz ◽  
Galé-Lamuela ◽  
Escolano-Margarit ◽  
Benavent-Climent

Shape memory alloys in the form of bars are increasingly used to control structures under seismic loadings. This study investigates the hysteretic behavior and the ultimate energy dissipation capacity of large-diameter NiTi bars subjected to low- and high-cycle fatigue. Several specimens are subjected to quasi-static and to dynamic cyclic loading at different frequencies. The influence of the rate of loading on the shape of the hysteresis loops is analysed in terms of the amount of dissipated energy, equivalent viscous damping, variations of the loading/unloading stresses, and residual deformations. It is found that the log-log scale shows a linear relationship between the number of cycles to failure and the normalized amount of energy dissipated in one cycle, both for low- and for high-cycle fatigue. Based on the experimental results, a numerical model is proposed that consists of two springs with different restoring force characteristics (flag-shape and elastic-perfectly plastic) connected in series. The model can be used to characterize the hysteretic behavior of NiTi bars used as energy dissipation devices in advanced earthquake resistant structures. The model is validated with shake table tests conducted on a reinforced concrete structure equipped with 12.7 mm diameter NiTi bars as energy dissipation devices.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Bo Zhang ◽  
Sizhi Zeng ◽  
Fenghua Tang ◽  
Shujun Hu ◽  
Qiang Zhou ◽  
...  

As a stimulus-sensitive material, the difference in composition, fabrication process, and influencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire with a 1 mm diameter and special element composition were tested under multi-working conditions, which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical results with the improved model of Graesser’s theory was verified by a comparison to the experimental results. The experimental results show that the number of cycles has no significant effect on the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the loading rate increasing, the pinch effect of the hysteresis curves will be enlarged, while the effective elastic modulus and slope of the transformation stresses in the process of loading and unloading are also increased, and the maximum energy dissipation capacity of the SMA wires appears at a loading rate of 0.675 mm/s. Moreover, with the initial strain increasing, the slope of the transformation stresses in the process of loading is increased, while the effective elastic modulus and slope of the transformation stresses in the process of unloading are decreased, and the maximum energy dissipation capacity appears at the initial strain of 0.0075. In addition, a good agreement between the test and numerical results is obtained by comparing with the hysteresis curves and energy dissipation values, so the numerical model is useful to predict the stress–strain relations at different stages. The test and numerical results will also provide a basis for the design of corresponding self-centering steel dampers.


Author(s):  
Michael CH Yam ◽  
Ke Ke ◽  
Ping Zhang ◽  
Qingyang Zhao

A novel beam-to-column connection equipped with shape memory alloy (SMA) plates has been proposed to realize resilient performance under low-to-medium seismic actions. In this conference paper, the detailed 3D numerical technique calibrated by the previous paper is adopted to examine the hysteretic behavior of the novel connection. A parametric study covering a reasonable range of parameters including the thickness of the SMA plate, friction coefficient between SMA plate and beam flange and pre-load of the bolt was carried out and the influence of the parameters was characterized. In addition, the effect of the SMA Belleville washer on the connection performance was also studied. The results of the numerical study showed that the initial connection stiffness and the energy-dissipation capacity of the novel connection can be enhanced with the increase of the thickness of the SMA plate. In addition, the initial connection stiffness and energy-dissipation behavior of the novel connection can be improved by increasing the friction coefficient or pre-load of bolts, whereas the increased friction level could compromise the self-centering behavior of the connection. The hysteretic curves of the numerical models of the connection also implied that the SMA washers may contribute to optimizing the connection behavior by increasing the connection stiffness and energy-dissipation capacity without sacrificing the self-centering behavior.


2014 ◽  
Vol 6 ◽  
pp. 185629 ◽  
Author(s):  
Qiang Han ◽  
Junfeng Jia ◽  
Zigang Xu ◽  
Yulei Bai ◽  
Nianhua Song

Rhombic mild-steel plate damper (also named rhombic added damping and Stiffness (RADAS)) is a newly proposed and developed bending energy dissipation damper in recent years, and its mechanical properties, seismic behavior, and engineering application still need further investigations. In order to determine the basic mechanical performance of RADAS, fundamental material properties tests of three types of mild-steel specimen including domestically developed mild-steel material with low yield strength were carried out. Then, a quasistatic loading test was performed to evaluate the mechanical performance and hysteretic energy dissipation capacity of these rhombic mild-steel dampers manufactured by aforementioned three types of steel materials. Test results show that yield strength of domestically developed low yield strength steel (LYS) is remarkably lower than that of regular mild steel and its ultimate strain is also 1/3 larger than that of regular mild steel, indicating that the low yield strength steel has a favorable plastic deformation capability. The rhombic mild-steel plate damper with low yield strength steel material possesses smaller yield force and superior hysteretic energy dissipation capacity; thus they can be used to reduce engineering structural vibration and damage during strong earthquakes.


2019 ◽  
Vol 14 (02) ◽  
pp. 2050007
Author(s):  
Xizhi Zhang ◽  
Shengbo Xu ◽  
Shaohua Zhang ◽  
Gaodong Xu

In this study, two types of novel box connections were developed to connect precast concrete (PC) columns and to ensure load transfer integrity. Cyclic loading tests were conducted to investigate the seismic behavior of the PC columns with proposed connections as well as the feasibility and reliability of novel box connections. The failure mode, hysteretic behavior, bearing capacity, ductility, stiffness degradation and energy dissipation were obtained and discussed. The test results indicated that the all PC columns exhibited the ductile flexural failure mode and that the proposed connections could transfer the force effectively. The adoption of novel box connections could improve the deformation capacity and energy dissipation capacity of PC columns. A higher axial compression ratio could enhance the bearing capacity of PC column with proposed connection but would significantly deteriorate the ductility and energy dissipation capacity. Finite element models were developed and the feasibility of the models was verified by the comparison with the test results.


2012 ◽  
Vol 204-208 ◽  
pp. 2528-2532
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

Joints are the forces cross points of members, and the bearing modes are more complex than other members, especially under earthquake action, so the rationality of joints are directly related to the safe reliability of structure. By the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: the energy dissipation capacity of joints is much better, the degradation of strength and stiffness are slowly when reached the ultimate strength, and the ductility is also good.


2012 ◽  
Vol 517 ◽  
pp. 564-569
Author(s):  
Jin Song Fan ◽  
An Zhou ◽  
Li Hua Chen ◽  
Bing Kang Liu

Recycled concrete is a kind of new construction materials, and now received more and more attention from researchers and engineers, since its application in engineering projects can well cater to the increasing requirements of development for economic and environment-friendly society. Based on the pseudo static test of five recycled reinforcement concrete frame columns with different experimental axial compression ratios from 0.3 to 0.65, their failure modes, failure mechanism, hysteretic behavior, skeleton curves, bearing capacity, rigidity, ductility and energy dissipation capacity were discussed. Some possible influence factors and disciplines were also selected and analyzed. The study indicates that recycled reinforcement concrete frame columns in the case of relative low axial compression ratios usually exhibited similar and steady mechanical properties with common concrete columns. With the increase of axial compression ratio, its ductility and energy dissipation capacity are decreased and destruction forms tended to obvious brittle fracture, though its bearing capacity could slightly rise. The test results and analysis also manifest recycled concrete had expectative application potentials in most case.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6648-6667
Author(s):  
Xiaoli Han ◽  
Jian Dai ◽  
Wei Qian ◽  
Baolong Li ◽  
Yuanjun Jin ◽  
...  

The wooden columns in timber structures of ancient buildings have column foot tenons of various sizes. The main reason for these differences is their use for different roof loads. Six full-scale specimens with different sizes of column foot tenon were designed and manufactured. The tree species used for the specimens was larch. The quasi-static test was conducted on the specimens that were used in timber structures of ancient buildings. The effects of column foot tenon size on the mechanical properties of larch wooden columns were studied. The moment-rotational angle hysteretic curves, moment-rotational angle skeleton curves, ductility, stiffness degradation, energy dissipation capacity, slippages between the wooden column and the plinth, and the damage of the column foot tenons were examined. The test results showed that the column foot tenon played an important role in the mechanical behavior of the wooden column under low-cycle reversed cyclic loading. The rotation of the column foot tenon improved the energy dissipation capacity of the wooden column. As the rotational angle of the column base increased, the column foot tenon had different degrees of damage. Different sizes of column foot tenon had their own advantages and hysteretic behavior.


2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Guofeng Xue ◽  
Wei Bao ◽  
Jin Jiang ◽  
Yongsong Shao

This study proposed a beam-to-column joint equipped with a new type of cast steel connector. The cast steel connector concentrated the primary portion of the deformation and energy dissipation of the joint and was installed with full bolted connections, rendering it a replaceable energy dissipation component and facilitating the rapid repair of the joint after an earthquake. Three full-scale specimens were fabricated and tested to investigate the hysteretic behaviors of the proposed joints under cyclic loadings. The results showed that the proposed cast steel connector exhibited reliable ductility and energy dissipation capacity. The beam-to-column joints with cast steel connectors under appropriate configuration can limit the deformation to the cast steel connector and protect the remaining joint components from plastic deformation. A more detailed finite element analysis was performed to investigate the hysteretic behavior of the joint further. The FEM results illustrated that the thickness of the vertical leg of the cast steel connector can significantly influence the stiffness and bearing capacity of the joint. Meantime, it would improve the hysteretic behavior effectively. The proposed beam-to-column joints with cast steel connectors can achieve the requirement of stiffness and load-bearing capacity and can be widely applicable in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document