Failure Mode Attribution Analysis of PBL Shear Connector

2013 ◽  
Vol 351-352 ◽  
pp. 683-686
Author(s):  
Wen Jiang Zhang ◽  
Er Xia Du ◽  
Bei Zhan Liu ◽  
Shao Chong Yang

Investigation on PBL shear connectors failure modes and their related factors is conducted. On the basis of analysis on the detail mechanism of PBL shear connectors failure modes, the relations between the construction factors and failure modes are summarized. A reasonable way of failure mode is proposed for exerting the material properties of all components in PBL shear connector. As reference to construction and design of PBL shear connector, it is advised that the high strength concrete should be used, and the strength of steel plate should be not less than that of rebar. The position and posture of rebar cannot be ignored.

2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


2020 ◽  
Vol 10 (23) ◽  
pp. 8647
Author(s):  
Mansour Ghalehnovi ◽  
Mehdi Yousefi ◽  
Arash Karimipour ◽  
Jorge de Brito ◽  
Mahdi Norooziyan

The most researches on steel-concrete-steel (SCS) sandwich slabs are to control the cracking of concrete core along with losing weight, and shear connector type. In this study, the behaviour of SCS slabs with bi-directional corrugated-strip shear connectors (CSC) was investigated. One of the most important practical problems of CSCs in SCS slabs is lack of access for another end welding to the second steel faceplate. In this research, plug weld was proposed to provide partial welding of the other end of CSCs to a steel plate. For this reason, three slabs were manufactured using the normal concrete core as a control sample and lightweight concrete (LWC) core with and without steel fibres. The behaviour of these slabs was compared with the behaviour of SCS slabs with J-hook and stud bolt connectors from previous researches. The specimens were tested under a concentrated block load as quasi-statically. Based on the load-displacement relationship at the centre, failure modes, loading capacity, energy absorption, and ductility showed acceptable behaviour for CSC system slabs. There was also a good agreement between the ultimate flexural strength based on experiments and previous research relationships.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yang Liu ◽  
Dan Zeng ◽  
Lei Cao ◽  
Naiwei Lu

In order to improve the stiffness and shear bearing capacity of steel-UHPC composite bridge, an innovative shear connector named arc-shaped reinforcement shear connector was proposed and compared with the stud and perforated bar steel plate shear connector using the static push-out test. Considering shear connector diameter, a total of ten push-out specimens for five groups were designed. The results indicated that the failure modes and failure mechanism of the arc-shaped reinforcement shear connectors were significantly different from stud shear connector and perforated bar steel plate. Obvious failure characteristics such as crack and reinforcement were not observed for the arc-shaped reinforcement specimens except for fine cracks on the top of one specimen, but these were observed for the others two types of shear connector. The relative slip value of arc-shaped reinforcement shear connector at the maximum load was the smallest and less than 1 mm in three types of shear connectors. The stiffness and shear bearing capacity of arc-shaped reinforcement were higher than those of stud and perforated bar steel plate under the same diameter. Increasing arc-shaped reinforcement diameter could improve significantly static behavior of shear connector. When the diameter of arc-shape reinforcement was increased from 8 mm to 12 mm, the ductility factor, stiffness, and shear bearing capacity of arc-shaped reinforcement shear connector were improved by 174.32%, 214.76%, and 54.2%, respectively. A calculation method of shear bearing capacity was proposed by the least square method and multiple regression analysis and agreed well with the test result.


2017 ◽  
Vol 21 (5) ◽  
pp. 658-674 ◽  
Author(s):  
Xizhi Zhang ◽  
Jiawei Zhang ◽  
Xuejian Gong ◽  
Shaohua Zhang

This study proposes a new type of fabricated hybrid frame structure, which is a prefabricated high-strength concrete tube column–steel beam joint hybrid frame structure. A series of six full-scale cruciform prefabricated high-strength concrete tube column–H-shaped beam joint specimens was tested under cyclic loading to investigate the seismic performance of the new fabricated hybrid frame structure. We designed the connection in the manner that the capacity of beam was higher than that of the column. The cracking pattern, failure modes, energy dissipation capacity, and strain profiles of the specimens were obtained and discussed. The test results showed that some specimens collapsed due to ring plate tearing failure and weld fracture, while other specimens collapsed due to column flexural failure. Shear connectors (i.e. shear studs and shear reinforcement) could ensure the reliable transmission of shear force, and the compound stirrups can effectively improve bearing capacity and joint ductility. The stiffness degradation of specimens was smooth with a linearly decreasing trend because of the prestressed reinforcement. The new joints could be applied in a seismic region.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2958 ◽  
Author(s):  
Jun Chen ◽  
Wei Wang ◽  
Fa-Xing Ding ◽  
Ping Xiang ◽  
Yu-Jie Yu ◽  
...  

The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.


2014 ◽  
Vol 41 ◽  
pp. 124-134 ◽  
Author(s):  
Mahdi Shariati ◽  
Ali Shariati ◽  
N.H. Ramli Sulong ◽  
Meldi Suhatril ◽  
M.M. Arabnejad Khanouki

Sign in / Sign up

Export Citation Format

Share Document