Biological Aerated Filter Applied to Advanced Treatment of Ammonia Nitrogen in Wastewater from Hair Products

2013 ◽  
Vol 361-363 ◽  
pp. 644-649
Author(s):  
Guo Min Tang ◽  
Peng Cao ◽  
Shuang Wang ◽  
Yun Chen

Wastewater from hair products was the industrial wastewater typically hard to treat with high concentration ammonia nitrogen (NH4+-N) and the low Carbon to Nitrogen (C/N) ratio. In this study ,a pilot-scale study was conducted on Biological Aerated Filter ( BAF) to deeply remove NH4+-N in wastewater from hair products, which aimed to provide technology support for hair products enterprises.The experiments showed that the optimal conditions of BAF was as following: the ratio of air to water was 19:1, the ammonia nitrogen volumetric load was 0.22 kgm3d-1, in this situation the removal efficiency of Chemical Oxygen Demand (CODcr) and NH4+-N were respectively from 25.0% to 32.5% and from 90.6% to 92.5%, the NH4+-N concentrations and CODcr in effluent were always under 12 mg/L and 100 mg/L respectively, which meet fully first class discharge standard requirement of Integrated wastewater discharge standard in china (GB8978-1996)(IWDSC). Moreover the experiment demonstrated that BAF returned to normal at the moment of 2.5 hours after the end of backwashing.

2016 ◽  
Vol 73 (8) ◽  
pp. 2031-2038 ◽  
Author(s):  
L. Y. Fu ◽  
C. Y. Wu ◽  
Y. X. Zhou ◽  
J. E. Zuo ◽  
Y. Ding

In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography–mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86–6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent.


2011 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Pramanik Biplob ◽  
Suja Fatihah ◽  
Zain Shahrom ◽  
ElShafie Ahmed

An upflow, partially packed biological aerated filter (BAF) reactor was used to remove nitrogen in the form of ammonia ions by a nitrification process that involves physical, chemical and biological phenomena governed by a variety of parameters such as dissolved oxygen concentration, pH and alkalinity. Dissolved oxygen (DO) and pH were shown to have effects on the nitrification process in this study. Three C:N ratios i.e., 10, 4 and 1 were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 0.405 ± 0.015 kg chemical oxygen demand m−3 d−1. The removal efficiencies of ammonia linearly increase with a rise of the initial concentration of ammonia-nitrogen. The results of the 115 days' operation of the BAF system showed that its overall NH3-N performance was good, where a removal efficiency of 87.0 ± 2.9%, 89.2 ± 1.38% and 91.1 ± 0.7% and COD removal of 87.6 ± 2.9%, 86.4 ± 2.1% and 89.5 ± 2.6% were achieved for the C:N ratios of 10, 4 and 1, respectively on average, over 6 h hydraulic retention time (HRT). No clogging occurred throughout the period although backwashing was eliminated. It was concluded that the BAF system proposed in this study removed nitrogen by the nitrification process extremely well.


2011 ◽  
Vol 1 (3) ◽  
pp. 160-171 ◽  
Author(s):  
Pramanik Biplob ◽  
Suja Fatihah ◽  
Zain Shahrom ◽  
Elshafie Ahmed

This paper examines on-off systems and automatic monitoring and control of a biological aerated filter to identify the end point of nitrification and denitrification processes, and chemical oxygen demand (COD), ammonia-nitrogen removal (NH3-N) and aeration savings. Oxidation-reduction potential (ORP), pH and dissolved oxygen (DO) were measured on-line and chemical parameters were measured in the wastewater. The ‘nitrate knee’ in the ORP profile was characterised by a breakpoint at average 160 min, representing the complete removal of NO3-N, i.e. the end of the denitrification period, as well as the end of the nitrification period was clearly shown in the pH profile (ammonia valley) at average 210 min for all C/N ratios. The NH3-N removal efficiencies were 92.30, 97.57 and 98.02% whilst the COD removals of 95.06, 96.38 and 97.56% were achieved for the C/N ratios of 10, 4 and 1 respectively. Therefore, the on-off control was operated at average 230 min for aeration time and 130 min for the anoxic period. Thus significant improvements can be achieved with respect to the continuous aeration strategy, and average operational costs reduced by 36.11%. The study showed that an on-off controller can easily be implemented in wastewater process-control, and monitoring systems improve effluent quality and reduce energy consumption.


2018 ◽  
Vol 78 (1) ◽  
pp. 49-56
Author(s):  
I. A. Sánchez ◽  
R. K. X. Bastos ◽  
E. A. T. Lana

Abstract In two pilot-scale experiments, fingerlings and juvenile of tilapia were reared in high rate algal pond (HRAP) effluent. The combination of three different total ammonia nitrogen (TAN) surface loading rates (SLR1 = 0.6, SLR2 = 1.2; SLR3 = 2.4 kg TAN·ha−1·d−1) and two fish stocking densities (D1 = 4 and D2 = 8 fish per tank) was evaluated during two 12-week experiments. Fingerlings total weight gain varied from 4.9 to 18.9 g, with the highest value (equivalent to 0.225 g·d−1) being recorded in SLR2-D1 treatment; however, high mortality (up to 67%) was recorded, probably due to sensitivity to ammonia and wide daily temperature variations. At lower water temperatures, juvenile tilapia showed no mortality, but very low weight gain. The fish rearing tanks worked as wastewater polishing units, adding the following approximate average removal figures on top of those achieved at the HRAP: 63% of total Kjeldahl nitrogen; 54% of ammonia nitrogen; 42% of total phosphorus; 37% of chemical oxygen demand; 1.1 log units of Escherichia coli.


2010 ◽  
Vol 61 (3) ◽  
pp. 789-796 ◽  
Author(s):  
S. González-Martínez ◽  
S. Piña-Mondragón ◽  
Ó. González-Barceló

The main objective of this research was to determine the feasibility to treat the azo dye direct blue 2 together with municipal wastewater in a biological aerated filter (BAF) using lava stones as support of the microorganisms and under combined anaerobic/aerobic conditions. A 3 m high pilot biological aerated filter was fed with municipal wastewater and, after several weeks, the azo dye direct blue 2 was added to the wastewater to reach a final concentration of 50 mg/L (34 mgCOD/L). Under continuous operation, two strategies were tested: Alternating aeration (12 h anaerobic and 12 h aerobic) and combined aeration (the lower part of the filter anaerobic and the upper part aerobic). The results indicate that municipal wastewater acted as a good electron donor resulting in satisfactory COD and dye removal rates. Better dye removal (61%) was obtained with combined aeration than with alternating aeration (45%). After beginning the azo dye addition, the COD removal rates decreased from 87 to 81% for both alternating and combined aeration procedures. The average ammonia nitrogen removal, without the addition of the dye, was 73% and increased to 90% shortly after beginning the dye addition, then it decreased to 81% during the combined aeration period. Excellent nitrification was observed in the upper aerobic part of the filter. For the combined aeration phase, the conditions change from anaerobic to aerobic does not seem to affect the behavior of the COD and TSS curves.


2013 ◽  
Vol 726-731 ◽  
pp. 1940-1944 ◽  
Author(s):  
Liang Shen ◽  
Han Xiao ◽  
Wan Qiu Yang ◽  
De Ren Miao ◽  
Xiao Ming Li

Using coagulation and sedimentation process in the advanced treatment of urban secondary effluent which can be recycled to circulating cooling water system in power plant is only perform well on CODCrand turbidity removal. But the concentrations of organic matter and NH3in effluent can not meet the requirements of circulating cooling water. Therefore, in this study, the feasibility of biological aerated filter (BAF) as a pretreatment enhancing coagulation and sedimentation process was discussed. Achieved by controlling the two operating modes: (1) secondary effluentcoagulation and sedimentationeffluent; (2) secondary effluent BAFcoagulation and sedimentation effluent.The results show that the BAF pretreatment removes ammonia nitrogen effectively, and the turbidity and CODCrof effluent of BAF-coagulation sedimentation process is much lower than individual coagulation and sedimentation process. The final effluent qualities meet the requirements of circulating cooling water system in power plant.


2019 ◽  
Vol 79 (9) ◽  
pp. 1639-1647 ◽  
Author(s):  
Lu-ji Yu ◽  
Tao Chen ◽  
Yanhong Xu

Abstract Micro-polluted river water is characterized as having limited biodegradability, low carbon to nitrogen ratio and little organic carbon supply, all of which makes it hard to further purify. Two bench scale constructed wetlands (CWs) with a horizontal subsurface flow mode were set up in the laboratory to evaluate their feasibility and efficiency on denitrification with and without corn cobs as external carbon sources. Micro-polluted river water was used as feed solution. The CW without corn cobs substrates possessed a good performance in removing chemical oxygen demand (COD, <40 mg/L) and ammonia nitrogen (NH3-N, <0.65 mg/L), but less efficiency in removing total nitrogen (TN) and nitrate nitrogen (NO3-N). In marked contrast, the CW with 1% (w/w) corn cobs substrates as external carbon sources achieved a significant improvement in the removal efficiency of TN (increased from 34.2% to 71.9%) and NO3-N (increased from 19% to 71.9%). The incorporation of corn cobs substrates did not cause any obvious increase in the concentrations of COD and NH3-N in the effluent. This improvement in the denitrification efficiency was owing to the released organic carbon from corn cobs substrates, which facilitated the growth of abundant microbes on the surface and pores of the substrate. The open area of the used corn chips is larger than that of the pristine ones, and corn cobs can continue to provide a carbon fiber source for denitrification.


2016 ◽  
Vol 74 (7) ◽  
pp. 1553-1560
Author(s):  
Kun Zhong ◽  
Yi-yong Luo ◽  
Zheng-song Wu ◽  
Qiang He ◽  
Xue-bin Hu ◽  
...  

A vertical flow constructed wetland was combined with a biological aerated filter to develop an ecological filter, and to obtain the optimal operating parameters: The hydraulic loading was 1.55 m3/(m2·d), carbon–nitrogen ratio was 10, and gas–water ratio was 6. The experimental results demonstrated considerable removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in wastewater by the ecological filter, with average removal rates of 83.79%, 93.10%, 52.90%, and 79.07%, respectively. Concentration of NH4+-N after treatment met the level-A discharge standard of GB18918-2002. Compared with non-plant filter, the ecological filter improved average removal efficiency of COD, NH4+-N, TN, and TP by 13.03%, 25.30%, 14.80%, and 2.32%, respectively: thus, plants significantly contribute to the removal of organic pollutants and nitrogen. Through microporous aeration and O2 secretion of plants, the ecological filter formed an aerobic–anaerobic–aerobic alternating environment; thus aerobic and anaerobic microbes were active and effectively removed organic pollutants. Meanwhile, nitrogen and phosphorus were directly assimilated by plants and as nutrients of microorganisms. Meanwhile, pollutants were removed through nitrification, denitrification, filtration, adsorption, and interception by the filler. High removal rates of pollutants on the ecological filter proved that it is an effective wastewater-treatment technology for decentralized wastewater of mountainous towns.


Sign in / Sign up

Export Citation Format

Share Document