Tilapia rearing with high rate algal pond effluent: ammonia surface loading rates and stocking densities effects

2018 ◽  
Vol 78 (1) ◽  
pp. 49-56
Author(s):  
I. A. Sánchez ◽  
R. K. X. Bastos ◽  
E. A. T. Lana

Abstract In two pilot-scale experiments, fingerlings and juvenile of tilapia were reared in high rate algal pond (HRAP) effluent. The combination of three different total ammonia nitrogen (TAN) surface loading rates (SLR1 = 0.6, SLR2 = 1.2; SLR3 = 2.4 kg TAN·ha−1·d−1) and two fish stocking densities (D1 = 4 and D2 = 8 fish per tank) was evaluated during two 12-week experiments. Fingerlings total weight gain varied from 4.9 to 18.9 g, with the highest value (equivalent to 0.225 g·d−1) being recorded in SLR2-D1 treatment; however, high mortality (up to 67%) was recorded, probably due to sensitivity to ammonia and wide daily temperature variations. At lower water temperatures, juvenile tilapia showed no mortality, but very low weight gain. The fish rearing tanks worked as wastewater polishing units, adding the following approximate average removal figures on top of those achieved at the HRAP: 63% of total Kjeldahl nitrogen; 54% of ammonia nitrogen; 42% of total phosphorus; 37% of chemical oxygen demand; 1.1 log units of Escherichia coli.

2013 ◽  
Vol 69 (2) ◽  
pp. 269-277 ◽  
Author(s):  
C. Da Ros ◽  
C. Cavinato ◽  
F. Cecchi ◽  
D. Bolzonella

In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m3d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm3biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.


2015 ◽  
Vol 72 (4) ◽  
pp. 632-642 ◽  
Author(s):  
Pusker Regmi ◽  
Becky Holgate ◽  
Dana Fredericks ◽  
Mark W. Miller ◽  
Bernhard Wett ◽  
...  

This paper deals with an almost 1-year long pilot study of a nitritation-denitritation process that was followed by anammox polishing. The pilot plant treated real municipal wastewater at ambient temperatures. The effluent of high-rate activated sludge process (hydraulic retention time, HRT = 30 min, solids retention time = 0.25 d) was fed to the pilot plant described in this paper, where a constant temperature of 23 °C was maintained. The nitritation-denitritation process was operated to promote nitrite oxidizing bacteria out-selection in an intermittently aerated reactor. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia and nitrate + nitrite concentrations. The unique feature of this aeration control was that fixed dissolved oxygen set-point was used and the length of aerobic and anoxic durations were changed based on the effluent ammonia and nitrate + nitrite concentrations. The anaerobic ammonia oxidation (anammox) bacteria were adapted in mainstream conditions by allowing the growth on the moving bed bioreactor plastic media in a fully anoxic reactor. The total inorganic nitrogen (TIN) removal performance of the entire system was 75 ± 15% during the study at a modest influent chemical oxygen demand (COD)/NH4+-N ratio of 8.9 ± 1.8 within the HRT range of 3.1–9.4 h. Anammox polishing contributed 11% of overall TIN removal. Therefore, this pilot-scale study demonstrates that application of the proposed nitritation-denitritation system followed by anammox polishing is capable of relatively high nitrogen removal without supplemental carbon and alkalinity at a low HRT.


2016 ◽  
Vol 73 (8) ◽  
pp. 2031-2038 ◽  
Author(s):  
L. Y. Fu ◽  
C. Y. Wu ◽  
Y. X. Zhou ◽  
J. E. Zuo ◽  
Y. Ding

In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography–mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86–6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3000
Author(s):  
Wujie Xu ◽  
Yu Xu ◽  
Haochang Su ◽  
Xiaojuan Hu ◽  
Keng Yang ◽  
...  

Ammonia is the main pollution factor of the aquatic environment in marine shrimp culture systems. In order to demonstrate the feasibility of the combination of biofloc technology and nitrifying biofilter for the ammonia removal, a 70-day production trial was conducted in a simplified pilot-scale hybrid biofloc-based recirculating aquaculture system (biofloc-RAS) with the intensive culture of Litopenaeus vannamei. Nitrogen dynamics and nitrifying microbial communities were investigated in three replicated systems simultaneously under the conditions of high feed loading and zero water exchange. Along with biofloc development in the culture tank and biofilm formation in the nitrifying biofilter during the trial, nitrification could be fastly and effectively established in the system, which was indicated by the dynamics of total ammonia nitrogen (TAN), NO2–-N, NO3–-N, and total nitrogen (TN) concentrations. Meanwhile, similar nitrifying microorganisms could be found between biofloc and biofilm, despite some differences in abundance, diversity, and composition of ammonia-oxidizing archaea and bacteria and nitrite-oxidizing bacteria. High TAN removal rate could be achieved and was significantly and positively correlated with abundances of these nitrifying microbial communities in both biofloc and biofilm, further indicating that both biofloc and biofilm could contribute highly to nitrification performance of the biofloc-RAS. The results of this study indicate a potential application of the biofloc-RAS in coastal intensive aquaculture.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 179-186 ◽  
Author(s):  
H. M. Poggi-Varaldo ◽  
J. Trejo-Espino ◽  
G. Fernández-Villagómez ◽  
F. Esparza-García ◽  
S. Caffarel-Méndez ◽  
...  

Our previous work has shown the technical and economic feasibility of the solid substrate anaerobic digestion (DASS) of municipal and non-hazardous industrial solid wastes. However, the anaerobic compost (AnC) quality for direct application as a soil amender or other alternative uses are issues that have received scarce attention. This research aimed at reviewing the advances made by our Group in two areas: anaerobic compost quality determination, and its post-treatment by aerobic composting. A factorial experiment 4×2×2 was run. The factors were feedstock type (4 mixtures of food waste, FW, and lignocellulosic fraction, LG: 100%FW, 67%FW-33%LG, 33%FW-67%LG and 100%LG or FS1, FS2, FS3 and FS4 respectively), temperature (35°C and 55°C), and mass retention time (MRT, 16 and 23 days). The LG fraction consisted of paper mill sludge cake. Anaerobic compost from DASS reactors operated at 23 day/35°C) was fed to lab scale semi-continuous aerobic composters (5 day and 10 day MRT, 35°C and 55°C). The AnC coming from feedstocks with increasing proportion of LG fraction (FS3 and FS4) gave the lowest chemical oxygen demand (COD), biochemical oxygen demand (BOD), volatile organic acids (VOA) and total ammonia nitrogen (TAN) concentrations in the extract and the highest germination indices (GI). The AnC from thermo- digesters showed a lower quality than those from mesophilic reactors (presumably associated to higher contents of VOA and TAN in the extracts), while AnC from digesters at 23 day-MRT had a better quality than those from reactors operated at 16-day-MRT. Overall, AnC generated in reactors fed with FS3 and FS4, at 35°C and 23 day-MRT showed the highest quality. Heavy metal concentrations in all the AnC were lower than the maximum levels indicated in USA and European compost quality standards. However, high total oxygen uptake (UAD), moderate-to-high concentrations of VOA and GIs under 60% indicated that the AnC was not suitable for direct use as a soil improver. Regarding the aerobic post-composting, operation at longer MRT (10 day) and 55°C gave aerobic composts of better quality than those coming from 5 day-MRT composters. Aerobic post-composting caused considerable reductions of TAN, VOA, UAD, immediate oxygen demand rate, and increased compost GI up to approximately 100%.


2004 ◽  
Vol 39 (4) ◽  
pp. 449-456 ◽  
Author(s):  
Jian Guo Li ◽  
Harold Horneck ◽  
David Averill ◽  
J. Alex McCorquodale ◽  
Nihar Biswas

Abstract Experimental investigations were conducted to evaluate the effectiveness of a retention treatment basin (RTB) with polymer coagulation for the treatment of combined sewer overflows (CSO) at high hydraulic loading rates. The TSS removal efficiency of the pilot-scale RTB at a surface overflow rate (SOR) of 11 m/h was approximately 35% without chemical addition, and 80% with a polymer dosage range of 5 to 10 milligrams per gram of influent TSS. The results demonstrated that the use of polymer coagulation significantly improved TSS removal and allowed the SOR in the RTB to be significantly increased, resulting in smaller treatment units. An empirical relationship was established to estimate removal efficiencies as a function of overflow rate. The results also compared settling characteristics of CSO, obtained from long column tests, to removal efficiencies in the high-rate RTB.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 374
Author(s):  
Hongbo Feng ◽  
Honggang Yang ◽  
Jianlong Sheng ◽  
Zengrui Pan ◽  
Jun Li

Aerobic granular sludge (AGS) with oversized diameter commonly affects its stability and pollutant removal. In order to effectively restrict the particle size of AGS, a sequencing batch reactor (SBR) with a spiny aeration device was put forward. A conventional SBR (R1) and an SBR (R2) with the spiny aeration device treating tannery wastewater were compared in the laboratory. The result indicates that the size of the granular sludge from R2 was smaller than that from R1 with sludge granulation. The spines and air bubbles could effectively restrict the particle size of AGS by collision and abrasion. Nevertheless, there was no significant change in mixed liquor suspended solids (MLSS) and the sludge volume index (SVI) in either bioreactors. The removal (%) of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) in these two bioreactors did not differ from each other greatly. The analysis of biological composition displays that the proportion of Proteobacteria decreased slightly in R2. The X-ray fluorescence (XRF) analysis revealed less accumulation of Fe and Ca in smaller granules. Furthermore, a pilot-scale SBR with a spiny aeration device was successfully utilized to restrict the diameter of granules at about 300 μm.


2013 ◽  
Vol 448-453 ◽  
pp. 478-481
Author(s):  
Zhi Yong Han ◽  
Si Su ◽  
Yan Lu ◽  
Wang Bing Du

The Sequencing Inclined Dynamic Membrane Biological Reactor (SIDMBR) was investigated on a pilot scale for 60 days of emulsified oil wastewater treatment at zero excess sludge discharge. Results indicate that at hydraulic retention time of 24 h, the average removals of chemical oxygen demand (COD), ammonia nitrogen and oil are 66.83, 64.2 and 70.8% in 1~60 days, respectively. The membrane flux, biofilm quantity, and extracellular polymeric substances (EPS) content begin to change after 20th, which indicate that membrane fouling has occurred.


2007 ◽  
Vol 42 (4) ◽  
pp. 284-294 ◽  
Author(s):  
Dwight Houweling ◽  
Frédéric Monette ◽  
Louise Millette ◽  
Yves Comeau

Abstract A pilot study was performed at the Sainte-Julie wastewater treatment plant to evaluate the potential of using the Moving-Bed biofilm reactor (MBBR) process for removing BOD5 (5-day biochemical oxygen demand) and ammonia nitrogen in a two-stage process at the exit of the first lagoon. Nitrification was observed in the first reactor at rates similar to those reported in the literature for a similar biomass carrier when bulk liquid dissolved oxygen (DO) concentrations were 6 g of O2 per m3. Nitrification rates were significantly reduced when DO was reduced to 3 g of O2 per m3. DO concentrations were maintained at 6 g of O2 per m3 in the second reactor, and nitrification rates comparable to those reported in the literature were observed for a temperature range of 3 to 16°C. An empirical DO-limited model was validated for the first reactor while in the second reactor nitrification was found to be either DO limited or total-ammonia-nitrogen limited, depending on nitrification rates in the upstream reactor. The DO-limited model predicts that the MBBR process is more sensitive to organic load than it is to temperature. A commercially available numerical model was calibrated to the results of the pilot study. Model results indicate that detachment and attachment rates play an important role in determining nitrification rates in the biofilm. Similar nitrification rates in an MBBR system installed upstream and downstream from an aerated lagoon in winter conditions were predicted using the empirical DO-limited model.


Sign in / Sign up

Export Citation Format

Share Document