A New Titanium-Based Heusler Alloy

2013 ◽  
Vol 380-384 ◽  
pp. 4276-4279
Author(s):  
Lei Feng ◽  
Fei Wang ◽  
Ju Gao ◽  
Yu Gang Fan ◽  
Xue Nan Deng

TheHeusleralloy system is a rich source of functional materials. We studied the ternary alloyTi2NiSbby first-principles calculations to explore for new functional alloy. We performed geometry optimization for the alloy withHg2CuTi-typestructure and the obtained equilibrium lattice parameter isa0=6.21Å. The magnetic moments of atomNiis 0.22μBin one cell. The alloy is a ferromagnet. The little magnetic moment of atomNicomes from the characteristic spatial occupation of the atoms in the space structure of the alloy.

2013 ◽  
Vol 710 ◽  
pp. 174-177
Author(s):  
Lei Feng ◽  
Fei Wang ◽  
Ju Gao ◽  
Jin Zhi Yin ◽  
Xiu Yan Luo

A new Heusler alloyV2NiGawith Hg2CuTi-type structure was investigated by first-principles calculations. The band structures and magnetic properties have been studied. The alloy has a total magnetic moment of 1.05μBper unit cell on first-principles calculations which is in agreement with theSlaterPauling(SP) rule. The magnetic moments ofV(1) atom andV(2) atom are 1.28μBand-0.44μBrespectively, so the alloy is a ferrimagnetism.


2018 ◽  
Vol 60 (6) ◽  
pp. 1122
Author(s):  
О.О. Павлухина ◽  
В.В. Соколовский ◽  
В.Д. Бучельников ◽  
М.А. Загребин

AbstractThe results of first-principles studies of the structure and magnetic properties of Fe–Rh–Z alloys conducted using the VASP package are reported. The magnetic moments and lattice parameters are determined, and the possibility of existence of stable tetragonal distortions in Fe–Rh–Z alloys with various magnetic configurations set by the level of doping with Mn, Pt, and Co is examined. It is demonstrated that the equilibrium lattice parameter and the type of magnetic ordering change with the concentration of the third element.


2019 ◽  
Vol 5 (1) ◽  
pp. 97-102
Author(s):  
R. Dahal ◽  
G. C. Kaphle

The spintronic devices have played an important role in modern technological era. Heusler alloys have attracted lot of interest in spintronic applications due to their half-metallic properties predicted by band structure calculations. We investigate the electronic, magnetic and structural properties of half-Heusleralloys FeMnGe and CoMnSb using first principles based density functional theory (DFT) implemented on Tight Binding Linear Muffin-Tin Orbital within Atomic Sphere Approximation (TB-LMTO-ASA) code. The calculation reveal that CoMnSb and FeMnGe are half-metallic Ferro-magnet in nature of with magnetic moment 1.00 μB and 2.99 μB per formula unit at equilibrium lattice parameter respectively. The magnetic moment mainly originates from the strong spin polarization of d electrons of X atom and partial contribution of p electrons of Y atom. The half metallic gap of FeMnGe and CoMnSb is found to be 0.38 eV and 0.95 eV respectively. This shows that these alloys are very promising spintronic functional materials.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2339 ◽  
Author(s):  
Xiuwen Zhao ◽  
Bin Qiu ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Junfeng Ren ◽  
...  

The electronic structure and spin polarization properties of pentagonal structure PdSe2 doped with transition metal atoms are studied through first- principles calculations. The theoretical investigations show that the band gap of the PdSe2 monolayer decreases after introducing Cr, Mn, Fe and Co dopants. The projected densities of states show that p-d orbital couplings between the transition metal atoms and PdSe2 generate new spin nondegenerate states near the Fermi level which make the system spin polarized. The calculated magnetic moments, spin density distributions and charge transfer of the systems suggest that the spin polarization in Cr-doped PdSe2 will be the biggest. Our work shows that the properties of PdSe2 can be modified by doping transition metal atoms, which provides opportunity for the applications of PdSe2 in electronics and spintronics.


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


2013 ◽  
Vol 802 ◽  
pp. 109-113
Author(s):  
Kittiya Prasert ◽  
Pitiporn Thanomngam ◽  
Kanoknan Sarasamak

Elastic constants of NaCl-type TiN under pressure were investigated by first-principles calculations within both local density approximation (LDA) and Perdew-Burke-Ernzerhof generalized-gradient approximation (PBE-GGA). At ambient pressure, the calculated lattice parameter, bulk modulus, and elastic constants of NaCl-type TiN are in well agreement with other available values. Under pressure, all elastic constants,C11,C12, andC44, are found to increase with pressure.C11, which is related to the longitudinal distortion, increases rapidly with pressure whileC12andC44which are related to the transverse and shear distortion, respectively, are much less sensitive to pressure.


2013 ◽  
Vol 27 (15) ◽  
pp. 1362007
Author(s):  
JUN LIU ◽  
SHENG-BIAO TAN ◽  
HUI-NING DONG

The ground state geometric structures of the nanoparticles or clusters CO n(n = 1-6) were given based on the first-principles calculations. Then the magnetic properties of the clusters CO n(n = 1-6) and ( CO n)-2(n = 1-6) were calculated in system. Results show that their ground state structures are closely related to the numbers of O-ions. These clusters have no magnetic moments and half-metallicity if they are electroneutral. However, they have magnetic moments if they have positive or negative charges. The total magnetic moments of the clusters ( CO n)-2(n = 1-6, but n≠3) are all 2.0000 μB, and all their ions have contributions to the total magnetic moments. The main reason is that the molecular orbitals with lower energy filled with paired electrons and the molecular orbitals with higher energy are occupied by two electrons in parallel.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Vsevolod I. Razumovskiy ◽  
Eyvaz I. Isaev ◽  
Andrei V. Ruban ◽  
Pavel A. Korzhavyi

AbstractPt-Sc alloys with the γ-γ′ microstructure are proposed as a basis for a new generation of Pt-based superalloys for ultrahigh-temperature applications. This alloy system was identified on the basis of first-principles calculations. Here we discuss the prospects of the Pt-Sc alloy system on the basis of calculated elastic properties, phonon spectra, and defect formation energies.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 796
Author(s):  
Fang Yu ◽  
Yu Liu

In this paper, an in-depth theoretical study on some physical properties of Ti0.5Ta0.5 alloy with systematic symmetry under high pressure is conducted via first-principles calculations, and relevant physical parameters are calculated. The results demonstrate that the calculated parameters, including lattice parameter, elastic constants, and elastic moduli, fit well with available theoretical and experimental data when the Ti0.5Ta0.5 alloy is under T = 0 and P = 0 , indicating that the theoretical analysis method can effectively predict the physical properties of the Ti0.5Ta0.5 alloy. The microstructure and macroscopic physical properties of the alloy cannot be destroyed as the applied pressure ranges from 0 to 50GPa, but the phase transition of crystal structure may occur in the Ti0.5Ta0.5 alloy if the applied pressure continues to increase according to the TDOS curves and charge density diagram. The value of Young’s and shear modulus is maximized at P = 25   GPa . The anisotropy factors A ( 100 ) [ 001 ] and A ( 110 ) [ 001 ] are equal to 1, suggesting the Ti0.5Ta0.5 alloy is an isotropic material at 28 GPa, and the metallic bond is strengthened under high pressure. The present results provide helpful insights into the physical properties of Ti0.5Ta0.5 alloy.


Sign in / Sign up

Export Citation Format

Share Document