The Periodic Solution and Numerical Simulations for Iced Cable System

2013 ◽  
Vol 394 ◽  
pp. 144-149
Author(s):  
Jing Li ◽  
Yan Ping Ran ◽  
Xiao Na Yin ◽  
Li Hua Chen

In this paper, the periodic behavior of iced cable in the case of the in-plane fundamental parametric resonance-principal resonance, out-of-plane principal parametric resonance-principal resonance, and in 1:2 internal resonances is investigated. The sufficient condition for the existence of the periodic solutions about the system is obtained through using Melnikov function and Poincare mapping, then the stability of periodic solution is investigated by using blow-up transformations and the average method. Numerical simulations are performed to verify the analytical predictions and get three groups of diagrams.

2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Sanling Yuan ◽  
Yu Zhao ◽  
Anfeng Xiao

We consider a model of competition between plasmid-bearing and plasmid-free organisms in the chemostat with pulsed input and washout. We investigate the subsystem with nutrient and plasmid-free organism and study the stability of the boundary periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields the invasion threshold of the plasmid-bearing organism. By using the standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, plasmid-free, and plasmid-bearing organisms. Numerical simulations are carried out to illustrate our results.


2017 ◽  
Vol 6 (1) ◽  
pp. 1-13
Author(s):  
Liming Dai ◽  
Dandan Xia ◽  
Changping Chen

AbstractThis research investigates the nonlinear behavior and stability of an elastic suspended cable system under combined parametric and external excitations, with an approach of higher accuracy and reliability. Geometric nonlinearity of the cable and its in-plane and out-of-plane vibrations are considered. Multiple solutions of the system are found existing, corresponding to a single frequency of external excitation. The nonlinear stability of the cable system is investigated with focus on the influence of different system parameters. With the newly developed Periodicity-Ratio (P-R) method, the influences of different external excitations on the nonlinear vibrations of the cable system are examined, and a periodic-nonperiodic-chaotic region diagram is created for quantitatively and graphically identifying the stability and nonlinear behavior of the system.


2009 ◽  
Vol 02 (03) ◽  
pp. 363-375 ◽  
Author(s):  
YONGZHEN PEI ◽  
YONG YANG ◽  
CHANGGUO LI

In this paper, we introduce and study an impulsive mutualistic model with variable coefficients. By using Floquent theorem, the invasion threshold and the stability of the boundary periodic solution are obtained. Furthermore, by using standard techniques of bifurcation theory, the existent condition of the positive periodic solution is obtained. Finally, numerical simulations are carried out to confirm the main theorems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ata Keşkekler ◽  
Oriel Shoshani ◽  
Martin Lee ◽  
Herre S. J. van der Zant ◽  
Peter G. Steeneken ◽  
...  

AbstractMechanical sources of nonlinear damping play a central role in modern physics, from solid-state physics to thermodynamics. The microscopic theory of mechanical dissipation suggests that nonlinear damping of a resonant mode can be strongly enhanced when it is coupled to a vibration mode that is close to twice its resonance frequency. To date, no experimental evidence of this enhancement has been realized. In this letter, we experimentally show that nanoresonators driven into parametric-direct internal resonance provide supporting evidence for the microscopic theory of nonlinear dissipation. By regulating the drive level, we tune the parametric resonance of a graphene nanodrum over a range of 40–70 MHz to reach successive two-to-one internal resonances, leading to a nearly two-fold increase of the nonlinear damping. Our study opens up a route towards utilizing modal interactions and parametric resonance to realize resonators with engineered nonlinear dissipation over wide frequency range.


2021 ◽  
Vol 11 (5) ◽  
pp. 2106
Author(s):  
Abdelali El Aroudi ◽  
Mohamed Debbat ◽  
Mohammed Al-Numay ◽  
Abdelmajid Abouloiafa

Numerical simulations reveal that a single-stage differential boost AC module supplied from a PV module under an Maximum Power Point Tracking (MPPT) control at the input DC port and with current synchronization at the AC grid port might exhibit bifurcation phenomena under some weather conditions leading to subharmonic oscillation at the fast-switching scale. This paper will use discrete-time approach to characterize such behavior and to identify the onset of fast-scale instability. Slope compensation is used in the inner current loop to improve the stability of the system. The compensation slope values needed to guarantee stability for the full range of operating duty cycle and leading to an optimal deadbeat response are determined. The validity of the followed procedures is finally validated by a numerical simulations performed on a detailed circuit-level switched model of the AC module.


2020 ◽  
Vol 494 (1) ◽  
pp. 1045-1057 ◽  
Author(s):  
G O Barbosa ◽  
O C Winter ◽  
A Amarante ◽  
A Izidoro ◽  
R C Domingos ◽  
...  

ABSTRACT This work investigates the possibility of close binary (CB) star systems having Earth-size planets within their habitable zones (HZs). First, we selected all known CB systems with confirmed planets (totaling 22 systems) to calculate the boundaries of their respective HZs. However, only eight systems had all the data necessary for the computation of HZ. Then, we numerically explored the stability within HZs for each one of the eight systems using test particles. From the results, we selected five systems that have stable regions inside HZs, namely Kepler-34,35,38,413, and 453. For these five cases of systems with stable regions in HZ, we perform a series of numerical simulations for planet formation considering discs composed of planetary embryos and planetesimals, with two distinct density profiles, in addition to the stars and host planets of each system. We found that in the case of the Kepler-34 and 453 systems, no Earth-size planet is formed within HZs. Although planets with Earth-like masses were formed in Kepler-453, they were outside HZ. In contrast, for the Kepler-35 and 38 systems, the results showed that potentially habitable planets are formed in all simulations. In the case of the Kepler-413system, in just one simulation, a terrestrial planet was formed within HZ.


2021 ◽  
Vol 8 (1) ◽  
pp. 130-136
Author(s):  
Roberto Spagnuolo

Abstract The stability check of masonry structures is a debated problem in Italy that poses serious problems for its extensive use. Indeed, the danger of out of plane collapse of masonry walls, which is one of the more challenging to evaluate, is traditionally addressed not using finite element models (FEM). The power of FEM is not properly used and some simplified method are preferred. In this paper the use of the thrust surface is suggested. This concept allows to to evaluate the eccentricity of the membrane stresses using the FEM method. For this purpose a sophisticated, layered, finite element with a no-tension material is used. To model a no-tension material we used the smeared crack method as it is not mesh-dependent and it is well known since the early ’80 in an ASCE Report [1]. The described element has been implemented by the author in the program Nòlian by Softing.


2013 ◽  
Vol 760-762 ◽  
pp. 2263-2266
Author(s):  
Kang Yong ◽  
Wei Chen

Beside the residual stresses and axial loads, other factors of pipe like ovality, moment could also bring a significant influence on pipe deformation under external pressure. The Standard of API-5C3 has discussed the influences of deformation caused by yield strength of pipe, pipe diameter and pipe thickness, but the factor of ovality degree is not included. Experiments and numerical simulations show that with the increasing of pipe ovality degree, the anti-deformation capability under external pressure will become lower, and ovality affecting the stability of pipe shape under external pressure is significant. So it could be a path to find out the mechanics relationship between ovality and pipe deformation under external pressure by the methods of numerical simulations and theoretical analysis.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
V. Kartik ◽  
J. A. Wickert

The parametric excitation of an axially moving plate is examined in an application where a partial foundation moves in the plane of the plate and in a direction orthogonal to the plate’s transport. The stability of the plate’s out-of-plane vibration is of interest in a magnetic tape data storage application where the read/write head is substantially narrower than the tape’s width and is repositioned during track-following maneuvers. In this case, the model’s equation of motion has time-dependent coefficients, and vibration is excited both parametrically and by direct forcing. The parametric instability of out-of-plane vibration is analyzed by using the Floquet theory for finite values of the foundation’s range of motion. For a relatively soft foundation, vibration is excited preferentially at the primary resonance of the plate’s fundamental torsional mode. As the foundation’s stiffness increases, multiple primary and combination resonances occur, and they dominate the plate’s stability; small islands, however, do exist within unstable zones of the frequency-amplitude parameter space for which vibration is marginally stable. The plate’s and foundation’s geometry, the foundation’s stiffness, and the excitation’s amplitude and frequency can be selected in order to reduce undesirable vibration that occurs along the plate’s free edge.


Sign in / Sign up

Export Citation Format

Share Document