Research on the Parametric Design of Simple Sofa with RhinoScript

2013 ◽  
Vol 397-400 ◽  
pp. 802-805
Author(s):  
Lei Wei ◽  
Sha Liu ◽  
Yue Yuan ◽  
Yun Qi Wang

In view of sofa product’s features such as demand of great types and inefficient design, the paper presents a method of parametric design on the simple sofa based on RhinoScript. With analysis of simple sofa’s modeling characteristics, the model of simple sofa could be presented by different parameters. Then models of different sizes and appearance styles could be created easily and quickly by inputting different parameters. This method improves the design efficiency and avoids industrial designers’ repeat work. The design process of a kind of simple sofa testified the method and a series of sofa proposals were easily generated.

2010 ◽  
Vol 174 ◽  
pp. 159-162
Author(s):  
Guo Dong Liu ◽  
Mei Yun Zhang ◽  
Qiao Ping Liang ◽  
Hong Ping Zhang

Aiming at the complicated design process and expensive design software of packaging carton, the completely parametric design system of packaging carton was developed according to the general method and model of structural design and the general form of the graphic display and output of packaging carton on the Visual Basic and AutoCAD platform. A new design pattern for packaging carton was formed in this system, which can design the structural graphic of packaging carton on the Visual Basic and exhibit it in the AutoCAD. Its workflow accorded with traditional one. The system can remedy the limitation of design process, improve design efficiency, and reduce the design cost.


Author(s):  
Julia Reisinger ◽  
Maximilian Knoll ◽  
Iva Kovacic

AbstractIndustrial buildings play a major role in sustainable development, producing and expending a significant amount of resources, energy and waste. Due to product individualization and accelerating technological advances in manufacturing, industrial buildings strive for highly flexible building structures to accommodate constantly evolving production processes. However, common sustainability assessment tools do not respect flexibility metrics and manufacturing and building design processes run sequentially, neglecting discipline-specific interaction, leading to inflexible solutions. In integrated industrial building design (IIBD), incorporating manufacturing and building disciplines simultaneously, design teams are faced with the choice of multiple conflicting criteria and complex design decisions, opening up a huge design space. To address these issues, this paper presents a parametric design process for efficient design space exploration in IIBD. A state-of-the-art survey and multiple case study are conducted to define four novel flexibility metrics and to develop a unified design space, respecting both building and manufacturing requirements. Based on these results, a parametric design process for automated structural optimization and quantitative flexibility assessment is developed, guiding the decision-making process towards increased sustainability. The proposed framework is tested on a pilot-project of a food and hygiene production, evaluating the design space representation and validating the flexibility metrics. Results confirmed the efficiency of the process that an evolutionary multi-objective optimization algorithm can be implemented in future research to enable multidisciplinary design optimization for flexible industrial building solutions.


2018 ◽  
Vol 26 (4) ◽  
pp. 313-327 ◽  
Author(s):  
Guangying Jin ◽  
Séverine Sperandio ◽  
Philippe Girard

The concurrent engineering design depends on the efficiency of communication between the actors in the design process, such as how effective communication between engineers and teams will have a direct effect on the design efficiency. Currently, the relationships among different actors in the project are shaped by many new challenges such as multiplication of data and information, mass customization, global collaboration, ageing societies, increasing urbanization, scarcity of resources, dynamic technology and innovation. When managers consider these factors, human resource evaluation becomes much more complex to grasp. In order to cope with adaption of product–process–organization model for industry of the future, it is necessary to have a methodology to approach the problem of human resource evaluation in the future organization structure.


2021 ◽  
Vol 17 (1) ◽  
pp. 65-79
Author(s):  
Elton Cristovão da Silva Lima ◽  
Cristina Matsunaga ◽  
Leticia Teixeira Mendes

This research proposes an experimental design approach to design an ephemeral pavilion located at the Serpentine Gallery in London. The Serpentine Pavilions Programme functions as an experimentation laboratory and, at the same time, public and event spaces, enabling architects to expose their projects and work methodologies. Thus, the methods of Biomimicry and Parametric Design were combined to develop the pavilion. While the first one was used to create an ephemeral pavilion based on the Sartorius muscle, the second was responsible for generating the parametric model from a fast and intuitive manipulation code capable of exploring shape variations. This work explores the solution-based method approached by Badarnah (2012) based on a predefined problem (the pavilion project) and only after that seek some natural inspiration. Firstly, it was investigated the anatomy of the Sartorius muscle. Subsequently, with the domain of the solution, the parametric insertion of the shape was computationally performed. The anatomical study of the sartorius muscle revealed functions such as flexion, abduction, lateral rotation of the thigh, and medial rotation of the knee. Thus, the architectural choices reflect both its narrow and elongated morphology of the muscle and flexibility and rotation aspects. The pavilion also considered the previous Serpentine Pavilions regarding attributes such as area, height, and materials, which with other parameters may be changed using the code implemented in Grasshopper.


2021 ◽  
Author(s):  
◽  
Christopher David Welch

<p>Parametric design tools and visual programming languages are fast becoming an important part of the architects design process. A review of current literature notes that the barrier to entry into the medium is lowering while the power of the tools available is increasing. The purpose of this research is to use these emerging tools to explore complex architectural issues related to space planning and massing. This research aims to bring these aspects of the design process together to generate an architecture where programme and aesthetic are derived in equal measure by the architect and the computer. The project began with a series of technical studies focusing primarily on space planning, massing, site analysis and circulation with the purpose of using an amalgamation of these techniques to develop into a final generative algorithm. These ideas are explored through an open ended design process of iterative research and testing, self and peer review, development and critical reflection. The viability of the algorithm is then tested through the generation a number of test buildings, across variety of sites. In order to provide a direction and author a degree of creative friction within the research process, the projects are framed around the development of a mid-size, urban sited secondary school. The final algorithm provides constraints in such a way that the architecture evolves in a natural, predictable way that can still surprise and inform, as well as consistently producing viable, interesting iterations of buildings. This process, described as an “open box” structure, produced a wide variety of working concepts and provided a high level of control as a designer.</p>


Author(s):  
Mohammed A. Azam ◽  
William P. Holmes

Abstract Research has been carried out at Coventry University Centre for Integrated Design on the concept design process and it is funded by the Coventry University Research Fund. An experiment, simulating product design in industry, was conducted by concept designers which were, in turn, acted by student industrial designers and student engineering designers. In general the product design process is a sequential process. The first part of the process is the conceptual phase. This is followed by the engineering design phases which include all the manufacturing information. In this case the downstream engineering design focuses on designs for manufacture and process selection. Information on the requirements of conceptual designers in these areas was collected from these experiments. The information is ultimately to be incorporated into rules in a knowledge base which can be readily accessed by the industrial designer during concept development via a CAD system.


2021 ◽  
Author(s):  
Paul M. Sobota

<p><br clear="none"/></p><p>During the optioneering phase, engineers face the challenge of choosing between myriads of possible designs, while, simultaneously, several sorts of constraints have to be considered. We show in a case study of a 380 m long viaduct how parametric modelling can facilitate the design process. The main challenge was to satisfy the constraints imposed by several different stakeholders. In order to identify sustainable, aesthetic, economic as well as structurally efficient options, we assessed several key performance indicators in real time. By automatically estimating steel and concrete volumes, a simple, yet suitable approximation of the embodied carbon (considering 85-95%) can be obtained at a very early design stage. In summary, our parametric approach allowed us to consider a wider range of parameters and to react more flexibly to changing conditions during the project.</p><p><br clear="none"/></p>


2019 ◽  
Vol 11 (16) ◽  
pp. 4416 ◽  
Author(s):  
Do Young Kim

In this study, a design methodology based on prototyping is proposed. This design methodology is intended to enhance the functionality of the test, differentiating it from the prototyping that is being conducted in conventional architectural design projects. The objective of this study is to explore reference cases that enable designers to maximize the utilization of both digital models and physical models that have been currently used in architectural designs. Also, it is to explore the complementary roles and effects of digital models and physical models. Smart Building Envelopes (SBEs) are one of challenging topics in architectural design and requires innovative design process included tests and risk management. A conceptual prototyping-based model considering the topic is applied to the design studio (education environment in university). Designing SBEs is not difficult to conceive ideas, but it is impossible to “implement” using the conventional design method. Implementing SBEs requires to strengthen validities and improve responsibilities of ideas in the stages of architectural designs, with cutting-edge technologies and smart materials. The design methodology enables designers (represented by students) to apply materials and manufacturing methods using digital models (parametric design, simulation, BIM) and physical models, rather than representing vanity images that are considered simple science fiction.


Author(s):  
Aybüke Aurum ◽  
Oya Demirbilek

As we enter the third millennium, many organizations are forced to constantly pursue new strategies to differentiate themselves from their competitors. Examples include offering customers streams of new products and services, as well as continuously seeking to improve productivity, services and the effectiveness of product design, development and manufacturing processes. Consequently, new concepts, approaches and tools are emerging quickly as the globalization trend expands across the world. Product complexity, pressures to reduce production cycle time, the need for stakeholders’ contributions and multinational company as well as consumer requirements create the demand for sophisticated multi-designer collaborative virtual environments where product design can be shared and acted upon (Kunz, Christiansen, Cohen, Jin, & Levitt, 1998; Ragusa & Bochanek, 2001; Anderson, Esser & Interrante, 2003). Thus, researchers and practitioners recognize that collaboration is an essential aspect of contemporary, professional product design and development activities. The design process is collaborative by nature. Collaborative design fosters participation of stakeholders in any form during the design process. The design of a successful product is dependent on integrating information and experiences from a number of different knowledge domains. These domains include consumer (end-user) requirements, industrial designers’ professional design skills as well as manufacturers’ needs. This results in a product that performs at a functional as well as aesthetic level and that can be manufactured by the right process at the right price. End-user involvement is essential to product design, since products that do not achieve consumer satisfaction or meet consumer needs are doomed to fail (Schultz, 2001). Accurate understanding of user needs is an essential aspect in developing commercially successful products (Achilladelis, 1971). Hence, it is very important for industrial designers to gather the end-users’ needs and incorporate them into their designs. The involvement of manufacturers in the initial stages of the domestic product design process can lead to a dramatic reduction in a product’s development lifecycle time, also facilitating the coordination of the purchasing and engineering functions (Bochanek & Ragusa, 2001; Demirbilek, 2001). The increasing complexity of artifacts and the globalization of product development are changing research methodologies and techniques. A prime example of this includes the application of a virtual collaborative design environment (VCDE) for product design and manufacturing. This article focuses on the concept of virtual collaborative design. It describes a research effort to investigate cross-cultural collaboration in product development using online applications for domestic product design. The aim of this research is to investigate issues related to the virtual collaborative design (VCD) process, and to bring an understanding of stakeholder needs during the collaborative design process as well as to improve the relationships between end-users, designers and manufacturers. The article presents findings based on a survey study conducted with four different potential stakeholders: representatives of consumers, software designers, industrial designers and manufacturers.


Sign in / Sign up

Export Citation Format

Share Document