A Development of Detection System on Acid Value of Lubricating Oil Based on Impedance Method

2013 ◽  
Vol 401-403 ◽  
pp. 1177-1182
Author(s):  
Qiang Liao ◽  
Tao Xu ◽  
Xiao Wei Li ◽  
Wei Dong Fan

Acid value is one of the most important indexes in the detection of lubricating oil, the testing of which has been widely used in the corrosive and quality characterization of petroleum products. So far there is no widely adaptive method and instrument faced with acid value. By the use of impedance method, this paper has used AD5933 to establish a detection system on acid value and achieve detection without chemical and judgment. Convenient setting of parameters and processing and storage of data are realized by the virtual instrument technology. Based on serial communication and virtual I2C communication, timely two-way traffic of statistics is achieved. The checkout of the system is accomplished by the known impedance. According to GB on the test of acid value, through the preparation of oil samples, the feasibility and operability of the system are justified and the best test conditions are determined.

2005 ◽  
Author(s):  
Rabih E. Jabbour ◽  
Deborah Kuzmanovic ◽  
Patrick E. McCubbin ◽  
Ilya Elashvili ◽  
Charles H. Wick

2006 ◽  
Vol 1 (2) ◽  
Author(s):  
P. Literathy ◽  
M. Quinn

Petroleum and its refined products are considered the most complex contaminants frequently impacting the environment in significant quantities. They have heterogeneous chemical composition and alterations occur during environmental weathering. No single analytical method exists to characterize the petroleum-related environmental contamination. For monitoring, the analytical approaches include gravimetric, spectrometric and chromatographic methods having significant differences in their selectivity, sensitivity and cost-effectiveness. Recording fluorescence fingerprints of the cyclohexane extracts of the water, suspended solids, sediment or soil samples and applying appropriate statistical evaluation (e.g. by correlating the concatenated emission spectra of the fingerprints of the samples with arbitrary standards (e.g. petroleum products)), provides a powerful, cost-effective analytical tool for characterization of the type of oil pollution and detecting the most harmful aromatic components of the petroleum contaminated matrix. For monitoring purposes, the level of the contamination can be expressed as the equivalent concentration of an appropriate characteristic standard, based on the fluorescence intensities at the relevant characteristic wavelengths. These procedures are demonstrated in the monitoring of petroleum-related pollution in the water and suspended sediment in the Danube river basin


2008 ◽  
Vol 1122 ◽  
Author(s):  
Vladimir V. Zyryanov ◽  
Nikolay F. Uvarov ◽  
Artem S. Ulihin ◽  
Vladislav A. Sadykov

AbstractSSZ-based ceramics were obtained by sintering of nanopowders derived at room temperature by mechanochemical synthesis from refined technical grade ZrO2 nano-precursors. RT-treatment by 2.5 MeV electrons up to 1563 K was used for the modification of ceramics. Powders and ceramics were characterized by XRD, Raman, SEM and EDS, TEM, SIMS techniques. The phase composition of Zr0.89Sc0.1Ce0.01O1.95 ceramics was very close to cubic structure but better fitting of XRD patterns was obtained for rhombohedral lattice. Conductivity of solid electrolytes for IT SOFC was studied by complex impedance method. To stabilize cubic structure and increase conductivity at operation temperature of To ∼ 1000 K, the composition of SSZ solid electrolyte was optimized by addition of yttria and sintering aids. The interaction of admixtures with minor dopants leading to intergrain phase was revealed. During fast sintering, ceramics keep a memory about inhomogeneous disordered solid solutions in a form of nanostructuring. Conductivity data indicate nanostructuring of ceramics too: activation energies of bulk and grain boundary conductivities are close (Eb ∼ 0.9 eV, Egb ∼ 1.05 eV). Annealing of ceramics at high temperatures increases conductivity at To and promotes grain growth.


2016 ◽  
Vol 12 (02) ◽  
pp. 5
Author(s):  
Fenhua Sheng ◽  
Zujue Chen

The paper mainly aimed at solving the problem of yarn color fault detection. Yarn with different color is hard to detect in yarn production, a special photoelectric sensor is designed in this paper. First, this paper analyzed the requirement of light source and photoelectric receiver in the photoelectric sensor, and designs the light path and driver circuit. Then this paper analyzed the amplifier circuit and noise in the photoelectric sensor, with an amplifier circuit of minimal noise proposed at last. Finally, this paper tested the yarn color fault detection system with virtual instrument, and the test results showed a great application prospect of the photoelectric sensor. Photoelectric yarn clearer was the first type of electronic yarn clearer, but due to the under development of the optical technology and measurement technology, the photoelectric yarn cleaner can't meet the requirements of textile production, gradually replaced by capacitive yarn cleaner. Though photoelectric yarn cleaner had a good visual conformity degree, it’s still a unreplaceable method in colored yarn faults


Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 1937-1946
Author(s):  
M.M.D.R. Tugay ◽  
L.E. Mopera ◽  
E.B. Esguerra ◽  
K.A.T. Castillo-Israel

This study aimed to characterize and compare pili (Canarium ovatum Engl.) pulp oil from two different varieties of pili fruits in Bicol, Philippines namely M. Orolfo and Orbase varieties for possible utilization into oil-based products. The effects of varietal differences in pili fruits on physical, chemical and quality characteristics of its pulp oil were determined. These two oils were also compared with control oils, commercially available coconut oil and extra virgin olive oil. Pili pulp oil from M. Orolfo had dark color while Orbase had color close to extra virgin olive oil. The two varieties did not significantly differ from each other in terms of refractive index, moisture and volatile matters, acid value, iodine value, saponification number and percent unsaponifiable matter but significantly differed from coconut oil and extra virgin olive oil. On the other hand, the two varieties significantly differed from each other in terms of peroxide value, Vitamin A and α-tocopherol contents. In terms of fatty acid profile, high amounts of palmitic acid were determined in both pili varieties (19-25%) compared with coconut oil (6.34%). Oleic acid in Orbase was 71.5% while M. Orolfo had 58.1%, which are comparable with extra virgin olive oil (77.9%). Pili pulp oils from M. Orolfo and Orbase can be utilized into oilbased products because its chemical and quality characteristics are within the standard. Both can be stored for a longer period of time and healthier in terms of fatty acid composition and natural antioxidant content.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (04) ◽  
pp. 39-42
Author(s):  
M. S Kale ◽  
◽  
K. S. Laddha

Fixed oil obtained from the seeds of Momordica tuberosa (Roxb) Cogn. fruits (family: Cucurbitaceae) was analyzed using GC-MS. Five compounds, namely palmitic acid (hexadecanoic acid), oleic acid (9-octadecenoic acid), stearic acid (octadecanoic acid), ?-eleostearic acid (9, 11, 13-octadecatrienoic acid) and gama-linolenic acid (6, 9, 12-octadecatrienoic acid) were found to be major compounds in fixed oil obtained from the seeds of M. tuberosa fruits. Physical constants saponification value, unsaponifiable matter and acid value were found to be 182.4, 1.56% w/w and 11.44 respectively.


2000 ◽  
Vol 66 (8) ◽  
pp. 3277-3282 ◽  
Author(s):  
S. Bouterige ◽  
R. Robert ◽  
J. P. Bouchara ◽  
A. Marot-Leblond ◽  
V. Molinero ◽  
...  

ABSTRACT Sunflower downy mildew, caused by the fungus Plasmopara halstedii, is a potentially devastating disease. We produced two monoclonal antibodies (MAbs) (12C9 and 18E2) by immunizing mice with a partially purified extract of P. halstedii race 1. Both MAbs detected in enzyme-linked immunosorbent assay (ELISA) all races ofP. halstedii present in France. No cross-reactions were observed with Plasmopara viticola or with other fungi commonly associated with sunflowers. Both MAbs recognized the same three fungal antigens with molecular masses of 68, 140, and 192 kDa. However, the epitopes on the fungal antigens were distinct and repetitive. Seed homogenates from infected plants were incubated in wells coated with MAb 18E2. This resulted in the trapping of P. halstedii antigens that were identified with biotinylated MAb 12C9. No reactions were seen with seed homogenates from healthy plants. Thus, our results suggest that these MAbs might be used to develop a sandwich ELISA detection system for P. halstedii in infected seeds.


Sign in / Sign up

Export Citation Format

Share Document