Phytoremediation of Chromium and Lead Using Water Lettuce Pistia stratiotes L.)

2013 ◽  
Vol 401-403 ◽  
pp. 2071-2075 ◽  
Author(s):  
Yuan Qing Zhou ◽  
Shu Ying Li ◽  
Yun Dong Shi ◽  
Wei Lv ◽  
Tai Bo Shen ◽  
...  

Heavy metal pollution of water is of concern for human health and ecosystem. Under present investigation Pistia stratiotes L. (water lettuce) has been tested for removal of two important heavy metals chromium (Cr) and lead (Pb) from metal solution. This species was grown at four concentrations of Cr and Pb, i.e. 5.0, 10.0, 15.0 and 20.0 mg/L, respectively in single metal solution. This aquatic macrophyte has successfully removed up to 80% of Cr and 93% of Pb after 10 days. The bioconcentration factor (BCF) value ranged between 299 and 1026 for Cr and between 1672 and 1852 for Pb, respectively. The amount of BCF in Pistia stratiotes showed that removal of Pb was higher than removal of Cr. The accumulation of heavy metals was more obvious in the roots as compared to leaves. These findings contribute to the application of aquatic macrophytes to lead and chromium removal from moderately contaminated waters.

Author(s):  
Xiuling Li ◽  
Henglun Shen ◽  
Yongjun Zhao ◽  
Weixing Cao ◽  
Changwei Hu ◽  
...  

The Yi River, the second longest river in Shandong Province, China, flows through Linyi City and is fed by three tributary rivers, Beng River, Liuqing River, and Su River in the northeastern part of the city. In this study, we determined the concentrations of five heavy metals (Cr, Ni, Cu, Zn, and Pb) in water, sediment, and aquatic macrophyte samples collected from the junction of the four rivers and evaluated the potential ecological risk of heavy metal pollution. Most of the heavy metals in water were in low concentrations with the water quality index (WQI) below 1, suggesting low metal pollution. The sediments showed low heavy metal concentrations, suggesting a low ecological risk based on the potential ecological risk index (RI) and the geo-accumulation index (Igeo). The aquatic plant species Potamogeton crispus accumulated considerable amounts of heavy metals, which were closely related to the metal concentrations of the sediment. The plant species Salvinia natans also showed an excellent metal accumulation capability. Based on our results, the junction of the four rivers is only slightly polluted in terms of heavy metals, and the plant species P. crispus is a suitable bioindicator for sediment heavy metal pollution.


Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dongping Liu ◽  
Jian Wang ◽  
Huibin Yu ◽  
Hongjie Gao ◽  
Weining Xu

Abstract Background Heavy metal pollution of aquatic systems is a global issue that has received considerable attention. Canonical correlation analysis (CCA), principal component analysis (PCA), and potential ecological risk index (PERI) have been applied to heavy metal data to trace potential factors, identify regional differences, and evaluate ecological risks. Sediment cores of 200 cm in depth were taken using a drilling platform at 10 sampling sites along the Xihe River, an urban river located in western Shenyang City, China. Then they were divided into 10 layers (20 cm each layer). The concentrations of the As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were measured for each layer. Eight heavy metals, namely Pb, Zn, As, Cd, Cr, Cu, Ni, and Hg, were measured for each layer in this study. Results The average concentrations of the As, Cd, Cu, Hg, and Zn were significantly higher than their background values in soils in the region, and mainly gathered at 0–120 cm in depth in the upstream, 0–60 cm in the midstream, and 0–20 cm downstream. This indicated that these heavy metals were derived from the upstream areas where a large quantity of effluents from the wastewater treatment plants enter the river. Ni, Pb, and Cr were close or slightly higher than their background values. The decreasing order of the average concentration of Cd was upstream > midstream > downstream, so were Cr, Cu, Ni and Zn. The highest concentration of As was midstream, followed by upstream and then downstream, which was different to Cd. The potential factors of heavy metal pollution were Cd, Cu, Hg, Zn, and As, especially Cd and Hg with the high ecological risks. The ecological risk levels of all heavy metals were much higher in the upstream than the midstream and downstream. Conclusions Industrial discharge was the dominant source for eight heavy metals in the surveyed area, and rural domestic sewage has a stronger influence on the Hg pollution than industrial pollutants. These findings indicate that effective management strategies for sewage discharge should be developed to protect the environmental quality of urban rivers.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1801
Author(s):  
Valentina Andreea Calmuc ◽  
Madalina Calmuc ◽  
Maxim Arseni ◽  
Catalina Maria Topa ◽  
Mihaela Timofti ◽  
...  

It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.


2021 ◽  
Vol 25 (5) ◽  
pp. 52-57
Author(s):  
S.I. Alekseeva ◽  
Zh.M. Okhlopkova

The methods of biotesting of the aquatic environment based on the representative of the duckweed family (lat. Lemnaceae) greater duckweed (Spirodela polyrhiza (L.) Schleid) were considered. A review is presented on the use of greater duckweed as a model object in biological testing, in partic-ular, when exposed to heavy metals salts. When cultivated Spirodela polyrhiza with the addition of heavy metals salts, a change in the growth and development of plants in the experienced line of plants was revealed, as well as a decrease in the content of chlorophyll a and b.


2021 ◽  
Author(s):  
Concepcion Pla ◽  
Javier Valdes-Abellan ◽  
Miguel Angel Pardo ◽  
Maria Jose Moya-Llamas ◽  
David Benavente

&lt;p&gt;The impervious nature of urban areas is mostly responsible for urban flooding, runoff water pollution and the interception of groundwater recharge. Green infrastructure and sustainable urban drainage systems combine natural and artificial measures to mitigate the abovementioned problems, improving stormwater management and simultaneously increasing the environmental values of urban areas. The actual rate of urban growth in many urban areas requires the enhancement and optimization of stormwater management infrastructures to integrate the territorial development with the natural processes. Regarding the quality of runoff stormwater, heavy metals are critical for their impact on human health and ecological systems, even more if we consider the cumulative effect that they produce on biota. Thus, innovative stormwater management approaches must consider new solutions to deal with heavy metal pollution problems caused by runoff. In this study, we propose the employment of Arlita&lt;sup&gt;&amp;#174;&lt;/sup&gt; and Filtralite&lt;sup&gt;&amp;#174;&lt;/sup&gt;, two kind of lightweight aggregates obtained from expanded clays, to remove heavy metal concentration from runoff stormwater. Laboratory experiments were developed to evaluate the removal rate of different heavy metals existent in runoff stormwater. The lightweight aggregates acted as filter materials in column experiments to quantify their removal capacity. In addition, batch tests were also developed to evaluate the exhaustive capacity of the materials. Results from the study confirmed the efficiency of the selected lightweight aggregates to reduce the heavy metals concentration by up to 90% in urban stormwater runoff.&lt;/p&gt;


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18421-18427 ◽  
Author(s):  
Haiming Wu ◽  
Li Lin ◽  
Guangzhu Shen ◽  
Ming Li

The risk of heavy metals to aquatic ecosystems was paid much attention in recent years, however, the knowledge on effects of heavy metals on dissolved organic matter (DOM) released byMicrocystiswas quite poor, especially in eutrophic lakes.


2000 ◽  
Vol 60 (1) ◽  
pp. 83-92 ◽  
Author(s):  
A. F. M. CAMARGO ◽  
E. R. FLORENTINO

In this paper we evaluated the population dynamics and obtained estimates of the net primary production of the aquatic macrophyte Nymphaea rudgeana in an arm of the Itanhaém River (São Paulo State, Brazil). This species presents, in the studied area, a broad seasonal variation of biomass. As from November (13.1 g DW/m²) we observed a gradual increase of biomass that reached a maximum in February (163.1 g DW/m²). Then, the biomass decreased, maintaining low levels until a new growth period. The reduction of biomass is associated to the development of floating aquatic macrophytes (Pistia stratiotes and Salvinia molesta) and, subsequently to environmental factors (higher salinity values) that are unfavorable to their development. The net primary production of N. rudgeana was estimated from the biomass data, and the annual productivity value was estimated between 3.02 and 3.82 t/ha/year.


2020 ◽  
pp. 1589-1592
Author(s):  
Harith Saeed Al-Warid ◽  
Hayder Z Ali ◽  
Ghassan Nissan ◽  
Abbas Haider ◽  
Ahmed Yosef

     Thirty individuals of Bellamya bengalensis and Physella acuta were collected and identified from the Tigris River in Baghdad during the period between October to November 2017. The efficiency of bioaccumulation of the two species as bioindicators for aquatic heavy metal pollution with Cd, Ni, Pb and Cu was investigated. Both snail species had the ability to accumulate heavy metals. The mean of Ni concentration in soft tissues of both snails was 1.53 ppm while the mean concentration of other heavy metals was significantly lower; they reached 0.51 ppm, 0.36 ppm and 0.29 ppm, respectively. While no significant differences between B. bengalensis and  P.acuta were noticed in the ability to accumulate the heavy metals. It is concluded that both snails shared the features of good bioindicators due to their sensitivity to pollution.:


In this paper three sustainable approaches are made in waste management option. Firstly primary treated domestic sewage is treated by aquatic macrophytes using duckweed, water hyacinth and water lettuce. Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Phosphate, Nitrates are tested before and after. Result indicates in terms of water quality, almost all three plants shows same removal efficiencies. BOD and TSS removal efficiency is attained more than 95%. COD and TDS removal is reached upto 50% for almost all plants. Secondly the used aquatic macrophytes for wastewater treatment is again used for generation of biogas (water lettuce unit, duckweed unit, water lettuce unit). In addition to three aquatic macrophytes, sludge is collected from aquatic macrophyte unit for generation of biogas. Comparison is made with conventional cow dung biogas unit. Result indicates water lettuce and duckweed produce biogas at earlier stage itself and water hyacinth takes some time for starting of biogas production. This may be due to the structure and texture causes some time for decomposition. Sludge gives maximum biogas generation among all experimental setup. Also in this study cow dung did not give biogas more may be due to poor blend ratio of cow dung with water is one of the reason.


Sign in / Sign up

Export Citation Format

Share Document