Numerical Simulation of the Effects of the Nozzle Parameters on In-Cylinder Fuel and Air Mixing Process

2013 ◽  
Vol 401-403 ◽  
pp. 218-221
Author(s):  
Qi Liu ◽  
Guang Yao Ouyang ◽  
Shi Jie An ◽  
Yu Peng Sun

In order to study the injection property of diesel engine fuel injector, the three-dimension combustion model of TBD620 diesel engine is constructed on the AVL Fire software platform. A numerical simulation of the two injectors’ fuel injection process at different load conditions has been done. The influence on fuel and air mixing process is analyzed. The results show that the special injector has a good performance at low load, but the standard injector is more favorable for fuel and air fully mixing at high load.

Author(s):  
B. E. Knight

A simplified dimensional analysis has been made of the fuel-air mixing problem in diesel engines. The dimensionless variables describing the mixing pattern have been expressed in terms of the dimensionless variables describing the engine and fuel injection conditions by means of explicit equations with numerical values for the constants. A wide range of such equations has been derived and tables of numerical values are given as examples, together with examples of engine air motion calculations for comparison. A theoretical expression for fuel-spray penetration into a cross-wind has been compared with a few experimental results. Engine smoke and specific consumption measurements have been plotted against the appropriate dimensionless variables in two instances. In both instances the response of the engine to the variables is quite different. It is believed that the wide range of methods of engine performance data analysis outlined in this paper will make a significant contribution to progress in understanding diesel engine combustion.


2021 ◽  
Vol 7 (1) ◽  
pp. 254-261
Author(s):  
J. Shan ◽  
J. Li ◽  
Z. Guo ◽  
W. Yang

With the increasingly stringent requirements of diesel engine fuel consumption and pollutant emission, higher requirements are put forward for the performance of diesel engine fuel injection systems. Cavitation flow in diesel fuel injectors is an extremely important factor affecting spray characteristics. In this study, the occurrence of cavitation in the fuel injector nozzle and its impact on mass flow rate and vapor fraction at the outlet of the fuel injection hole are studied numerically for various fuels such as diesel, gasoline, ethanol and methanol. The results show that the mass flow rate of diesel is the highest and that of gasoline is the lowest. Methanol and gasoline have the highest vapor content, followed by ethanol, and then diesel with the lowest vapor phase. For mass flow, the mass flow is inversely proportional to the viscosity of the fuel, and for cavitation, the amount cavitation is inversely related to the viscosity of the fuel. This agrees with many researchers’ findings.


Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


2017 ◽  
Vol 170 (3) ◽  
pp. 147-153
Author(s):  
Rafał SOCHACZEWSKI ◽  
Zbigniew CZYŻ ◽  
Ksenia SIADKOWSKA

This paper discusses the modeling of a fuel injector to be applied in a two-stroke diesel engine. A one-dimensional model of a diesel injector was modeled in the AVL Hydsim. The research assumption is that the combustion chamber will be supplied with one or two spray injectors with a defined number of nozzle holes. The diameter of the nozzle holes was calculated for the defined options to provide a correct fuel amount for idling and the maximum load. There was examined the fuel mass per injection and efficient flow area. The studies enabled us to optimize the injector nozzle, given the option of fuel injection into the combustion chamber to be followed.


2002 ◽  
Vol 8 (5) ◽  
pp. 659-671 ◽  
Author(s):  
Mosaad Mosleh ◽  
Amier Al-Ali

A linear time invariant (LTI) model of a marine diesel engine is presented. The effect of the discontinuity of the fuel injection into the cylinders and the injection period is considered. The proposed discrete model consists of a sampler and zero-order-hold mechanism, representing the fuel injection process. The design of the discrete controller is based on the pole assignment of the characteristic polynomial of the closed-loop transfer function with the goal of achieving zero steady-state error, and satisfying other design specifications. A numerical example illustrating the characteristic performance of a two stroke marine diesel engine is presented.


Author(s):  
Prasad Divekar ◽  
Qingyuan Tan ◽  
Xiang Chen ◽  
Ming Zheng ◽  
Ying Tan

Diesel engine fuel injection control is presented as a feedback based online optimization problem. Extremum seeking (ES) approach is used to address the online optimization formulation. The cost function is synthesized from extensive experimental investigations such that the indicated thermal efficiency of the engine is maximized while minimizing the NOx emissions under external boundary conditions. Knowledge of the physical combustion and emission formation process based on a pre-calibrated non-linear engine model output is used to determine the ES initial control input to minimize the seeking time. The control is demonstrated on a hardware-in-the-loop engine simulator bench.


2019 ◽  
Vol 21 (9) ◽  
pp. 1662-1677 ◽  
Author(s):  
Xinyi Zhou ◽  
Tie Li ◽  
Yijie Wei ◽  
Ning Wang

Scaled model experiments can greatly reduce the cost, time and energy consumption in diesel engine development, and the similarity of spray characteristics has a primary effect on the overall scaling results of engine performance and pollutant emissions. However, although so far the similarity of spray characteristics under the non-evaporating condition has been studied to some extent, researches on scaling the evaporating sprays are still absent. The maximum liquid penetration length has a close relationship with the spray evaporation processes and is a key parameter in the design of diesel engine spray combustion system. In this article, the similarity of maximum liquid penetration length is theoretically derived based on the hypotheses that the spray evaporation processes in modern high-pressure common rail diesel engines are fuel–air mixing controlled and local interphase transport controlled, respectively. After verifying that the fuel injection rates are perfectly scaled, the similarity of maximum liquid penetration length in evaporating sprays is studied for three scaling laws using two nozzles with hole diameter of 0.11 and 0.14 mm through the high-speed diffused back-illumination method. Under the test conditions of different fuel injection pressures, ambient temperatures and densities, the lift-off law and speed law lead to a slightly increased maximum liquid penetration length, while the pressure law can well scale the maximum liquid penetration length. The experimental results are consistent with the theoretical analyses based on the hypothesis that the spray evaporation processes are fuel–air mixing controlled, indicating that the local interphase transports of energy, momentum and mass on droplet surface are not rate-controlled steps with respect to spray evaporation processes.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuanqing Wang ◽  
Guichen Zhang ◽  
Zhubing Shi ◽  
Qi Wang ◽  
Juan Su ◽  
...  

In this paper, in order to handle the nonlinear system and the sophisticated disturbance in the marine engine, a finite-time convergence control method is proposed for the diesel engine rotating speed control. First, the mean value model is established for the diesel engine, which can represent response of engine fuel injection to engine speed. Then, in order to deal with parameter perturbation and load disturbance of the marine diesel engine, a finite-time convergence active disturbance rejection control (ADRC) is proposed. At the last, simulation experiments are conducted to verify the effectiveness of the proposed controller under the different load disturbances for the 7RT-Flex60C marine diesel engine. The simulation results demonstrate that the proposed control scheme has better control effect and stronger anti-interference ability than the linear ADRC.


Wear ◽  
2006 ◽  
Vol 260 (4-5) ◽  
pp. 562-566 ◽  
Author(s):  
V. Macián ◽  
R. Payri ◽  
B. Tormos ◽  
L. Montoro

Sign in / Sign up

Export Citation Format

Share Document