Broadening Design and Preparation of MDF Absorber for Electromagnetic Pollution Control in S-Band

2013 ◽  
Vol 405-408 ◽  
pp. 2754-2759
Author(s):  
Wan Jun Hao ◽  
Ming Ming Wang ◽  
Yue Fang Zhang ◽  
Fan Wu ◽  
Dong Wei Chen ◽  
...  

This paper reported a new type MDF absorber of high absorption and Broadband was successfully prepared, according to the Electromagnetic Wave Absorbing Theory, by means of the theoretical design and simulation analysis by using MDF as the dielectric material and And with the resistance film composite. Results shown that the resistance of resistive film was 195Ω/□, the monolayer combined sample with thickness as 1.4cm in 2~4 GHz frequency bands, the range of absorbing over -20dB could achieve 50%, and all absorption could exceed -15dB in the whole S-band, the maximum absorption peak was -25dB, moreover, the absorption bandwidth of MDF was more than λ/4 Type EWM-absorber. The new materials could be used to improve residential electromagnetic environment and control pollution.

2013 ◽  
Vol 401-403 ◽  
pp. 924-928 ◽  
Author(s):  
Fan Wu ◽  
Wan Jun Hao ◽  
Yue Fang Zhang ◽  
Ming Ming Wang ◽  
Dong Wei Chen ◽  
...  

Based on the principle of electromagnetic wave absorption, through the double-layer matching design and simulation analysis, taking foam cement panel as the dielectric material, combining with the resistive film, the paper has successfully prepared high-performance and broad-band foam cement absorbing panel for electromagnetic pollution control. The result shows, with the use of double-matching design that combines 140 Ω/□ resistive film with foam cement absorbing panel whose each layer thickness is 1.4 cm, in the S band , 100% of bandwidth below-10 dB and 95% of bandwidth below-14 dB can be reached, a maximum absorption of-19.6 dB at 2.45 GHz, the width of the absorption is far more than that of λ/4 type absorber. New materials can be used for the improvement of indoor electromagnetic environment and pollution control.


2014 ◽  
Vol 487 ◽  
pp. 460-464
Author(s):  
Yuan Zhang ◽  
Ying Ying Wang ◽  
Yan Song ◽  
Li Li Zhou

In order to save space mission cost, prolonging the working life of the spacecraft and improving the flexibility and capable of performing various tasks should get more attention on orbit servicing technology. For the docking process of a new type of two independent service in-orbit spacecraft, this paper finished the kinematics analysis, for the whole docking capture process, two groups of different initial conditions and control function of the simulation analysis were finished by the ADAMS software. The results prove that the docking mechanism performance is very good, and reliable connection can be realized in the general initial conditions.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


2019 ◽  
Vol 8 (4) ◽  
pp. 9538-9542

In vision of searching for the right Unmanned Aerial System (UAS) for a specific mission, there are multiple factors to be considered by the operator such as mission, endurance, type of payload and range of the telemetry and control. This research is focusing on extending control range of the UAS by using 4G-LTE network to enable beyond-line-of-sight flying for the commercial UAS. Major UAS such Global Hawk, Predator MQ-1 are able to fly thousands of kilometers by the use of satellite communication. However, the satellite communication annual license subscription can be very expensive. With this situation in mind, a new type of flight controller with 4G-LTE communication has been developed and tested. Throughout the research, blended-wing-body (BWB) Baseline B2S is used as the platform for technology demonstrator. Result from this analysis has proven that the proposed system is capable to control a UAS from as far as United Kingdom, with a latency less than 881 ms in average. The new added capability can potentially give the commercial UAS community a new horizon to be able to control their UAS from anywhere around the world with the availability of 4G-LTE connection


2020 ◽  
Vol 04 ◽  
Author(s):  
A. Guillermo Bracamonte

: Graphene as Organic material showed special attention due to their electronic and conductive properties. Moreover, its highly conjugated chemical structures and relative easy modification permitted varied design and control of targeted properties and applications. In addition, this Nanomaterial accompanied with pseudo Electromagnetic fields permitted photonics, electronics and Quantum interactions with their surrounding that generated new materials properties. In this context, this short Review, intends to discuss many of these studies related with new materials based on graphene for light and electronic interactions, conductions, and new modes of non-classical light generation. It should be highlighted that these new materials and metamaterials are currently in progress. For this reason it was showed and discussed some representative examples from Fundamental Research with Potential Applications as well as for their incorporations to real Advanced devices and miniaturized instrumentation. In this way, it was proposed this Special issue entitled “Design and synthesis of Hybrids Graphene based Metamaterials”, in order to open and share the knowledge of the Current State of the Art in this Multidisciplinary field.


2014 ◽  
Vol 556-562 ◽  
pp. 1408-1412
Author(s):  
Zhi Qiang Zhang

In this paper, the following work is done: a new type of translational transmission device is designed; explained in detail are the operating principle, structural features, relationship of mechanism parameter and non interference conditions of the movement; the optimization analysis of transmission device is implemented on the basis of non interference conditions of the bucket movement; structural modeling and simulation analysis are carried out by utilization of Pro/e & Recurdyn; and based on virtual prototype technology, the new type of translational transmission device is verified by experiments, the data of which prove the translational transmission device reasonable and practicable. In conclusion, this paper has laid the theoretical foundation of the practical application of the translational transmission device.


2012 ◽  
Vol 271-272 ◽  
pp. 1742-1749
Author(s):  
Peng Cheng Huang ◽  
Qing Hua Yang ◽  
Guan Jun Bao ◽  
Li Bin Zhang

Aimed at existing problems on the bending performance of pneumatic bending joint, a new type of pneumatic bending joint is proposed in this paper. Double flexible pneumatic actuators are used as actuating drivers. Based on the first law of thermodynamics and the joint dynamic equation, the angle dynamic model is established and analyzed. Moreover simplified model is proposed. Meanwhile, its dynamic characteristic is analyzed through simulation analysis. The simulation suggests the following results: in the gas-filled phase, the joint’s pressure response time is about 10ms; while it is about 60ms in the gas-escape phase; and the angle response time of joint is 10 to 20ms. When the joint damping coefficient is increasing, this value will also increase.


2012 ◽  
Vol 490-495 ◽  
pp. 594-597
Author(s):  
Cheng Qun Li ◽  
Liang Gao

This paper introduces a new type of automatic steel bundling machine for bundling process, which includes a pneumatic action process, mainly do some researches on the pneumatic control system. The system chooses PLC as the core control component, puts forward the hardware of control system and control flow. Eventually we have been designed the control program.


mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Xiaoyuan Yuan ◽  
Kai Meng ◽  
Yuxia Zhang ◽  
Lihong Qi ◽  
Wu Ai ◽  
...  

ABSTRACT In 2017, a new type of goose-origin astrovirus (GoAstV) that is completely different from previously identified avian astroviruses (which have only 30.0% to 50.5% homology with GoAstV) has been isolated from diseased geese in China. This disease can cause joint swelling in sick geese, and the anatomy shows a clear precipitation of urate in the kidney. The rate of death and culling can reach more than 30%, revealing the disease’s severe pathogenicity. To quickly and accurately diagnose the newly emerging disease, we established a highly specific reverse transcription-quantitative PCR (RT-qPCR) method of detecting GoAstV. Sensitivity testing showed that the minimum amount of test sample for this method is 52.5 copies/μl. Clinical application confirmed that this method can quickly and effectively detect GoAstV, providing a diagnostic platform for the prevention and control of goose disease. IMPORTANCE Goose-origin astrovirus (GoAstV), as a newly emerging virus in 2017, is different from previously known astroviruses in the genus Avastrovirus. So far, few studies have focused on the novel virus. Considering the infectious development of astrovirus (AstV), we established a reverse transcription-quantitative PCR (RT-qPCR) assay with a strong specificity to quickly and accurately diagnose GoAstV. Confirmed by clinical application, this method can quickly and accurately detect prevalent GoAstV. The assay is thus convenient for clinical operation and is applicable to the monitoring of GoAstV disease.


2015 ◽  
Vol 645-646 ◽  
pp. 841-846 ◽  
Author(s):  
Jian Yan Wang ◽  
Ting Ting Wang ◽  
Hang Guo

Accelerometer in MEMS always is made by capacitive or piezoresistive, whose dynamic response is not good, the operating frequency is narrow, and the cross-axis sensitivity is low. A new type of piezoelectric micro-accelerometer is designed, and its structure is “x” type. The sensing unit is piezoelectric PZT films, which is achieved by sol-gel method. The accelerometer is a triaxial accelerometer. The theoretical and simulation analysis is used to achieve the charge sensitivity and response frequency, and also get the optimal structural parameters. A new circuit connection is proposed to improve the sensitivity and avoid the cross-axis sensitivity. The design achieves the z-axis sensitivity with more than 40 pC/g, x, y-axis sensitivity with more than 8pC/g, and the response frequency is about 3000Hz.


Sign in / Sign up

Export Citation Format

Share Document