Effect of Wastewater Treated by EM Reused for Irrigation on Shallow Groundwater Quality

2013 ◽  
Vol 409-410 ◽  
pp. 318-324 ◽  
Author(s):  
Chao Yin ◽  
Xiao Hou Shao ◽  
Xiao Wei Zhang ◽  
Liang Ren ◽  
Ting Ting Chang ◽  
...  

In allusion to environmental pollution brought about by wastewater irrigation, EM technology was introduced to study the feasibility of EM application in wastewater irrigation. The results show that EC, NO3--N and TN value of EM treatment in shallow groundwater are all less than those of WW treatment as a whole. In all samples, 59.3% NO3--N values are in the alert status, and when irrigation amount reaches 360mm, treatment WW has caused shallow groundwater pollution. TN concentration in treatment WW-3 on June 27 and July 9 is more than 110 mg/L. It suggests that NO3--N can easily penetrate into shallow groundwater with wastewater irrigation and there is insurance of groundwater pollution in the long-term wastewater irrigation. It also indicates that application of wastewater treated by EM reused for irrigation is feasible. TP values are all very low and suggest the pollution of P does not happen.

2014 ◽  
Vol 641-642 ◽  
pp. 97-100
Author(s):  
Qiang Huang ◽  
Wei Ping Wang ◽  
Hai Yan Deng

Selecting 4 shallow groundwater source heat pump (GSHP) projects as research objects in Weifang city of Shandong province, China, the groundwater quality in the project area was, observed and analyzed by sampling continuously. The results show that the concentrations of chloride and the total hardness are relatively stable, and there are no apparent changes; In the change curve of TDS in different kind of shallow GSHPs, the worse the sealing condition of the project, the more obvious the rising trend of TDS; The concentration of nitrate is generally on the rise, and the concentration of ammonia appears in the trend of first increased then decreased. Therefore, in the region, the shallow GSHPs are not completely free from contamination in the current technology conditions and the application should be controlled and managed strictly. The observation of shallow GSHPs still need be conducted in a long term.


2021 ◽  
Vol 35 (1) ◽  
pp. 3-14
Author(s):  
Elena Lapina ◽  
Larisa Lapina ◽  
Vera Kudryashova

The Ivankovo reservoir is an important source of drinking water for the city of Moscow. The water quality status of aquifers around the reservoir is important for its safety, as groundwater inflow into the reservoir is considerable. The chemical composition of the shallow groundwater around the Ivankovo reservoir is studied. The study is based on long-term monitoring (1999–2019) of both surface and groundwater quality. The aim of the paper is to identify changes in groundwater quality over this period and to determine their causes. The results show that over this 20 year-period, the groundwater quality in the study area shifted from HCO3–Ca to HCO3–Ca-Mg type, proven by statistical methods. The median values of the total dissolved solids (TDS) decreased by 13% in summer and by 17% in winter. It is shown that the ongoing processes of transformation of the groundwater chemical composition are mainly due to climate change, and atmospheric precipitation in the spring-winter period is a possible source of the Mg2+ ion entering the groundwater table. Among other components, concentrations of chlorides and sulfates underwent the largest change, the median values of which have decreased by two or more times, which is caused by both the dilution of the groundwater by melt water and a decrease in the anthropogenic load.


2002 ◽  
Vol 45 (3) ◽  
pp. 195-202 ◽  
Author(s):  
J.B. Ellis ◽  
D.M. Revitt

Inflow/infiltration (I/I) and infiltration/exfiltration (I/E) are interactive processes which dynamically affect sewer and groundwater performance. The incidence and condition of “critical” sewers in the UK are identified together with chemical and bacterial methods of quantifying I/E and its potential impact on sewer performance and on urban groundwater pollution. Whilst the impacts of I/E do not appear to be substantial on the basis of existing evidence, some caution is advocated in respect of long term sewer sustainability.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1209 ◽  
Author(s):  
Xiaomin Gu ◽  
Yong Xiao ◽  
Shiyang Yin ◽  
Qichen Hao ◽  
Honglu Liu ◽  
...  

Water scarcity has led to wide use of reclaimed water for irrigation worldwide, which may threaten groundwater quality. To understand the status of groundwater in the reclaimed water irrigation area in Beijing, 87 samples from both shallow and deep aquifers were collected to determine the factors affecting groundwater chemistry and to assess groundwater quality for drinking and irrigation purposes. The results show that groundwater in both shallow and deep aquifers in the study area is weakly alkaline freshwater with hydrogeochemical faces dominated by HCO3-Na·Mg·Ca, HCO3-Mg·Ca·Na, HCO3-Ca·Na, and HCO3-Na. The chemical composition of groundwater in both shallow and deep aquifers is dominantly controlled by the dissolution of halite, gypsum, anhydrite, and silicates weathering, as well as ion exchange. Geogenic processes (rock weathering and ion exchange) are the only mechanisms controlling groundwater chemistry in deep aquifers. Besides geogenic processes, evaporation and anthropogenic activities also affect the chemistry of shallow groundwater. Quality assessment reveals that both shallow and deep groundwater are generally suitable for drinking and irrigation purposes. The quality of deep groundwater is more excellent for drinking than shallow groundwater. However, long-term use of deep groundwater for irrigation exhibits higher potential risks to deteriorate soil property due to the relative higher permeability indexes (PI). Therefore, it is recommended that deep groundwater is preferentially used for drinking and domestic purpose, and shallow groundwater for agricultural irrigation.


2008 ◽  
Vol 58 (12) ◽  
pp. 2443-2452 ◽  
Author(s):  
W. Gwenzi ◽  
R. Munondo

The study investigated the effects of 26 years of effluent irrigation on chemical and bacteriological quality of shallow (<3.0 m) groundwater. Annual loading rates for N and P exceeded pasture requirements, while trace metals were either lower or higher than guideline limits. Effluent irrigation removed TN (44–71%), TP (80%), Cr (96%) and coliform bacteria (87–99.9%) while Zn, Cu and Cd removal was negligible probably due to their enhanced mobility. Analysis of groundwater samples from effluent-irrigated and non-irrigated control sites showed that effluent irrigation increased the levels of all measured parameters compared to the control. Average groundwater quality parameters from effluent-irrigated sites compared to the control were: pH (6.1 vs. 5.7), EC (0.71 vs. 0.53 dS m−1), concentrations (mg L−1) for TP (2.3 vs. 0.3), DP (1.0 vs. 0.1), TN (15.1 vs. 2.5), NH4–N (2.6 vs. 0.5), NO3–N (4.1 vs. 1.3), Zn (0.4 vs. 0.05), Cu (0.13 vs. 0.02), Cd (0.05 vs. 0.01) and Cr (0.06 vs. 0.03). Across effluent-irrigated sites, FC and TC were 25 and 288 cfu/100 ml, respectively, versus nil for the control. Overall, effluent irrigation led to groundwater contamination by N, P, trace metals and coliform bacteria, which could threaten the long-term sustainability of the practice.


2020 ◽  
Vol 16 ◽  
Author(s):  
Kannappan Panchamoorthy Gopinath ◽  
Malolan Rajagopal ◽  
Abhishek Krishnan ◽  
Shweta Kolathur Sreerama

Background: Depletion and contamination of environmental resources such as water, air and soil caused by human activities is an increasingly important challenge faced around the world. The consequences of environmental pollution are felt acutely by all living beings, both on a short and long-term basis, thereby making methods of remediation of environmental pollution an urgent requirement. Objectives: The objective of this review is to dissect the complications caused by environmental degradation, highlight advancements in the field of nanotechnology and to scrutinize its applications in environmental remediation. Furthermore, the review aims to concisely explain the merits and drawbacks of nanotechnology compared to existing methods. Conclusion: The current and potential applications of nanomaterials and nanocomposites in the prevention, control and reduction of air, water and soil pollution and the mechanisms involved have been elucidated, as have their various merits and demerits. The applications of nanotechnology in the fields of carbon capture and agriculture have also received attention in this review.


Sign in / Sign up

Export Citation Format

Share Document