Research and Design of Superscalar Pipeline Processor Based on CPLD Technology

2013 ◽  
Vol 427-429 ◽  
pp. 2822-2825
Author(s):  
Chang Qin Yan ◽  
Yan Yan Yu ◽  
Qian Huang ◽  
Jun Yang

Superscalar pipelining is to improve instruction-level parallelism and advanced technology, and is widely used in the computer's central processor and graphic accelerator. In this paper, we made use of advantage of CPLD devicesinherent flexibility, usability, predictability and so on, to achieve superscalar pipelining, designed and constructed a processor model superscalar pipeline machine based on RISC instruction set. Using EDA technology with top-down design methods, and gave the processor model hardware verification and performance test results, and had explored the use of EDA technology processor design ideas and methods.

VLSI Design ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yumin Hou ◽  
Hu He ◽  
Xu Yang ◽  
Deyuan Guo ◽  
Xu Wang ◽  
...  

This paper proposes FuMicro, a fused microarchitecture integrating both in-order superscalar and Very Long Instruction Word (VLIW) in a single core. A processor with FuMicro microarchitecture can work under alternative in-order superscalar and VLIW mode, using the same pipeline and the same Instruction Set Architecture (ISA). Small modification to the compiler is made to expand the register file in VLIW mode. The decision of mode switch is made by software, and this does not need extra hardware. VLIW code can be exploited in the form of library function and the users will be exposed under only superscalar mode; by this means, we can provide the users with a convenient development environment. FuMicro could serve as a universal microarchitecture for it can be applied to different ISAs. In this paper, we focus on the implementation of FuMicro with ARM ISA. This architecture is evaluated on gem5, which is a cycle accurate microarchitecture simulation platform. By adopting FuMicro microarchitecture, the performance can be improved on an average of 10%, with the best performance improvement being 47.3%, compared with that under pure in-order superscalar mode. The result shows that FuMicro microarchitecture can improve Instruction Level Parallelism (ILP) significantly, making it promising to expand digital signal processing capability on a General Purpose Processor.


2016 ◽  
Vol 10 (1) ◽  
pp. 70-77
Author(s):  
Jantri Sirait ◽  
Sulharman Sulharman

Has done design tool is a tool of refined coconut oil coconut grater, squeezer coconut milk and coconut oil heating, with the aim to streamline the time of making coconut oil and coconut oil increase production capacity. The research method consists of several stages, among others; image creation tool, procurement of materials research, cutting the material - the material framework of tools and performance test tools. The parameters observed during the performance test tools is time grated coconut, coconut milk bleeder capacity, the capacity of the boiler and the heating time of coconut oil. The design tool consists of three parts, namely a tool shaved coconut, coconut milk wringer and coconut milk heating devices. Materials used for the framework of such tools include iron UNP 6 meters long, 7.5 cm wide, 4 mm thick, while the motor uses an electric motor 0.25 HP 1430 rpm and to dampen the rotation electric motor rotation used gearbox with a ratio of round 1 : 60. the results of the design ie the time required for coconut menyerut average of 297 seconds, coconut milk wringer capacity of 5 kg of processes and using gauze pads to filter coconut pulp, as well as the heating process takes ± 2 hours with a capacity of 80 kg , The benefits of coconut oil refined tools are stripping time or split brief coconut average - average 7 seconds and coconut shell can be used as craft materials, processes extortion coconut milk quickly so the production capacity increased and the stirring process coconut oil mechanically.ABSTRAKTelah dilakukan rancang bangun alat olahan minyak kelapa yaitu alat pemarut kelapa, pemeras santan kelapa dan pemanas minyak kelapa, dengan tujuan untuk mengefisiensikan waktu pembuatan minyak kelapa serta meningkatkan kapasitas produksi minyak kelapa. Metode penelitian terdiri dari beberapa tahapan antara lain; pembuatan gambar alat, pengadaan bahan-bahan penelitian, pemotongan bahan - bahan rangka alat dan uji unjuk kerja alat. Parameter yang diamati pada saat uji unjuk kerja alat adalah waktu parut kelapa, kapasitas pemeras santan kelapa, kapasitas tungku pemanas serta waktu pemanasan minyak kelapa. Rancangan alat terdiri dari tiga bagian yaitu alat penyerut kelapa, alat pemeras santan kelapa dan alat pemanas santan kelapa. Bahan yang dipergunakan untuk rangka alat tersebut  yaitu besi UNP panjang 6 meter, lebar 7,5 cm, tebal 4 mm, sedangkan untuk motor penggerak menggunakan motor listrik 0,25 HP 1430 rpm dan untuk meredam putaran putaran motor listrik dipergunakan gearbox  dengan perbandingan putaran 1 : 60. Hasil dari rancangan tersebut yaitu waktu yang dibutuhkan untuk menyerut kelapa rata-rata 297 detik, kapasitas alat pemeras santan kelapa 5 kg sekali proses dan menggunakan kain kassa untuk menyaring ampas kelapa, serta Proses pemanasan membutuhkan waktu ± 2 jam dengan kapasitas 80 kg. Adapun keunggulan alat olahan minyak kelapa ini adalah waktu pengupasan atau belah kelapa singkat rata – rata 7 detik dan tempurung kelapa dapat digunakan sebagai bahan kerajinan, proses pemerasan santan kelapa cepat sehingga kapasitas produksi meningkat dan proses pengadukan minyak kelapa secara mekanis. Kata kunci : penyerut, pemeras, pemanas,minyak kelapa,olahan minyak kelapa.


2021 ◽  
Author(s):  
Zhan Su ◽  
Zhao Ding ◽  
Liquan Tian ◽  
Xue Lin ◽  
Zhiming Wang

2021 ◽  
pp. 1-8
Author(s):  
Junta Iguchi ◽  
Minoru Matsunami ◽  
Tatsuya Hojo ◽  
Yoshihiko Fujisawa ◽  
Kenji Kuzuhara ◽  
...  

BACKGROUND: Few studies have investigated the variations in body composition and performance in Japanese collegiate American-football players. OBJECTIVE: To clarify what characterizes competitors at the highest levels – in the top division or on the starting lineup – we compared players’ body compositions and performance test results. METHODS: This study included 172 players. Each player’s body composition and performance (one-repetition maximum bench press, one-repetition maximum back squat, and vertical jump height) were measured; power was estimated from vertical jump height and body weight. Players were compared according to status (starter vs. non-starter), position (skill vs. linemen), and division (1 vs. 2). Regression analysis was performed to determine characteristics for being a starter. RESULTS: Players in higher divisions and who were starters were stronger and had more power, greater body size, and better performance test results. Players in skill positions were relatively stronger than those in linemen positions. Vertical jump height was a significant predictor of being a starter in Division 1. CONCLUSION: Power and vertical jump may be a deciding factor for playing as a starter or in a higher division.


2021 ◽  
Vol 11 (3) ◽  
pp. 1225
Author(s):  
Woohyong Lee ◽  
Jiyoung Lee ◽  
Bo Kyung Park ◽  
R. Young Chul Kim

Geekbench is one of the most referenced cross-platform benchmarks in the mobile world. Most of its workloads are synthetic but some of them aim to simulate real-world behavior. In the mobile world, its microarchitectural behavior has been reported rarely since the hardware profiling features are limited to the public. As a popular mobile performance workload, it is hard to find Geekbench’s microarchitecture characteristics in mobile devices. In this paper, a thorough experimental study of Geekbench performance characterization is reported with detailed performance metrics. This study also identifies mobile system on chip (SoC) microarchitecture impacts, such as the cache subsystem, instruction-level parallelism, and branch performance. After the study, we could understand the bottleneck of workloads, especially in the cache sub-system. This means that the change of data set size directly impacts performance score significantly in some systems and will ruin the fairness of the CPU benchmark. In the experiment, Samsung’s Exynos9820-based platform was used as the tested device with Android Native Development Kit (NDK) built binaries. The Exynos9820 is a superscalar processor capable of dual issuing some instructions. To help performance analysis, we enable the capability to collect performance events with performance monitoring unit (PMU) registers. The PMU is a set of hardware performance counters which are built into microprocessors to store the counts of hardware-related activities. Throughout the experiment, functional and microarchitectural performance profiles were fully studied. This paper describes the details of the mobile performance studies above. In our experiment, the ARM DS5 tool was used for collecting runtime PMU profiles including OS-level performance data. After the comparative study is completed, users will understand more about the mobile architecture behavior, and this will help to evaluate which benchmark is preferable for fair performance comparison.


2011 ◽  
Vol 77 (775) ◽  
pp. 573-581
Author(s):  
Isamu TSUJI ◽  
Hiroshi GUNBARA ◽  
Kazumasa KAWASAKI ◽  
Yoshikazu ABE ◽  
Kazutaka SUZUKI ◽  
...  

Author(s):  
Dennis Wolf ◽  
Andreas Engel ◽  
Tajas Ruschke ◽  
Andreas Koch ◽  
Christian Hochberger

AbstractCoarse Grained Reconfigurable Arrays (CGRAs) or Architectures are a concept for hardware accelerators based on the idea of distributing workload over Processing Elements. These processors exploit instruction level parallelism, while being energy efficient due to their simplistic internal structure. However, the incorporation into a complete computing system raises severe challenges at the hardware and software level. This article evaluates a CGRA integrated into a control engineering environment targeting a Xilinx Zynq System on Chip (SoC) in detail. Besides the actual application execution performance, the practicability of the configuration toolchain is validated. Challenges of the real-world integration are discussed and practical insights are highlighted.


2020 ◽  
pp. 097215092097035
Author(s):  
Sweta Mishra ◽  
Shikta Singh ◽  
Priyanka Tripathy

Banking sector is predominantly a customer-focused business that provides a gamut of financial services in aid of advanced technology, prompt communication system and conception of various banks to deal with multinational led environment. Some priority should be given to human resource development in order to emerge as strong and viable financial institution. So, the banking sector should emphasize on employees and how they can be satisfied, engaged and perform better. This study indicates to what extent employee satisfaction and employee performance are interlinked with each other. The purpose of this study is to explore the factors of employee satisfaction and employee performance and to establish a relationship between them. A survey method using a structured questionnaire was used to collect the responses of bankers in SBI, Bhubaneswar region. Having the data collected from 240 filled questionnaires, analysis was carried out using exploratory factor analysis, and to further validate this, structural equation modelling was developed. This was followed by a confirmatory factor analysis to establish the linkage between employee satisfaction and employee performance. The results indicated a significant relationship between employee satisfaction and performance. This study contributes to understanding of the various factors affecting employee satisfaction and performance, especially in the banking sector. By focusing on employee satisfaction, managers can keep the employees more focused, engaged and committed to their work and enhance overall productivity of the organization.


Sign in / Sign up

Export Citation Format

Share Document