The Experiment for the Fracture Toughness of the Compound Bioceramic and the Analysis for the Confidence Level of its Reliability

2010 ◽  
Vol 44-47 ◽  
pp. 3003-3010
Author(s):  
Shi Lian Xu ◽  
Rui Hong Wang ◽  
Ruo Qi Li ◽  
Ren Ping Xu

The brittle is crippling the application of bioceramic. The compound bioceramic is a new biomaterial being widely applied in medical treatments and its fracture toughness is an important mechanical behaviors. In this paper, we introduce the manufacturing method of the compound bioceramic and experiment facilities for its fracture toughness, investigate its probability distribution for the experimental data and conduct the test for fit. We conclude that the experimental data for the toughness fracture of the compound bioceramic obey the two-parameter Weibull distribution, introduce the analyzing method for the upper confidence limit curve and lower confidence limit curve and study the reliability and confidence level of the fracture toughness of the compound bioceramic.

Author(s):  
V. I. Kostylev ◽  
B. Z. Margolin

The main features of shallow cracks fracture are considered, and a brief analysis of methods allowing to predict the temperature dependence of the fracture toughness KJC (T) for specimens with shallow cracks is given. These methods include DA-method, (JQ)-method, (J-T)-method, “local methods” with its multiparameter probabilistic approach, GP method uses power approach, and also two engineering methods – RMSC (Russian Method for Shallow Crack) and EMSC (European Method for Shallow Crack). On the basis of 13 sets of experimental data for national and foreign steels, a detailed verification and comparative analysis of these two engineering methods were carried out on the materials of the VVER and PWR nuclear reactor vessels considering the effect of shallow cracks.


2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


1997 ◽  
Vol 467 ◽  
Author(s):  
C. Godet

ABSTRACTIn hydrogenated amorphous silicon (a-Si:H) films, the increase of the metastable defect density under high-intensity illumination is usually described by an empirical two-parameter stretched-exponential time dependence (characteristic time τSE and dispersion parameter β). In this study, a clearly different (one-parameter) analytic function is obtained from a microscopic model based on the formation of metastable H (MSH) atoms in a-Si:H films. Assuming that MSH atoms are the only mobile species, only three chemical reactions are significant : MSH are produced from doubly hydrogenated (SiH HSi) configurations and trapped either at broken bonds or Si-H bonds, corresponding respectively to light-induced annealing (LIA) and light-induced creation (LIC) of defects. Competition between trapping sites results in a saturation of N(t) at a steady-state value Nss. A one-parameter fit of this analytical function to experimental data is generally good, indicating that the use of a statistical distribution of trap energies is not necessary.


2022 ◽  
Vol 21 (4) ◽  
pp. 308-311
Author(s):  
K. A. Molokov ◽  
V. V. Novikov

Introduction. Welded joints in large-sized metal structures (e.g., in the structures of ship hulls) subject to low-cycle fatigue are considered. The characteristic appearance of soft interlayers, which are significantly plastically deformed under working loads, was noted. Deformation of the metal structure with damage, especially in the form of cracks, reduces the strength and reliability of structural elements and joints. Pre-deformation negatively affects plasticity; therefore, much depends on the residual plasticity of the cracking material. At the same time, with a decrease in residual plasticity, such an important reliability indicator as the resistance of the material to crack propagation — the fracture toughness – decreases. The paper is devoted to the development of a model that includes analytical dependences for assessing the crack resistance of metal structures and their welded joints with soft interlayers according to the crack resistance limit for all crack sizes.Materials and Methods. The theory and methods of linear mechanics of materials destruction, structural-mechanical approach are used. The calculation results were analyzed and compared to the experimental data and other analytical solutions. The numerical experiment was performed for the ferrite-perlite steel grades of 10, 50, 22K, St3sp, etc., widely used in industry, as well as for alloy steels hardened to medium and high strength of 30KhGSA, 37KhN3A, etc. Results. Analytical dependences are obtained for calculating the relative crack resistance limit according to three main known mechanical characteristics of the state of the material of the soft interlayer of the welded joint.Discussion and Conclusions. The results obtained can be used to assess the crack resistance of pre-deformed structural elements and welded joints (including those with soft interlayers) operating under a transverse load. The results of experimental data and analytical calculations are shown in dimensionless form, which enables to obtain invariant results with respect to the fracture toughness limit.


2018 ◽  
Vol 57 (1) ◽  
pp. 54-62 ◽  
Author(s):  
S.V. Bobylev ◽  
A.G. Sheinerman

Abstract A model is proposed describing the effect of crack bridging on the fracture toughness of ceramic/graphene composites. The dependences of the fracture toughness on the graphene content and the sizes of the graphene platelets are calculated in the exemplary case of yttria stabilized zirconia (YSZ)/graphene composites. The calculations predict that if crack bridging prevails over crack deflection during crack growth, the maximum toughening can be achieved in the case of long graphene platelets provided that the latter do not rupture and adhere well to the matrix. The model shows good correlation with the experimental data at low graphene concentrations.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 485 ◽  
Author(s):  
Hari M. Srivastava ◽  
Arran Fernandez ◽  
Dumitru Baleanu

We consider the well-known Mittag–Leffler functions of one, two and three parameters, and establish some new connections between them using fractional calculus. In particular, we express the three-parameter Mittag–Leffler function as a fractional derivative of the two-parameter Mittag–Leffler function, which is in turn a fractional integral of the one-parameter Mittag–Leffler function. Hence, we derive an integral expression for the three-parameter one in terms of the one-parameter one. We discuss the importance and applications of all three Mittag–Leffler functions, with a view to potential applications of our results in making certain types of experimental data much easier to analyse.


1972 ◽  
Vol 39 (4) ◽  
pp. 879-882
Author(s):  
G. K. Fleming ◽  
S. A. Alpay

A similarity solution has been obtained for a fluid jet bounded on one side by a separation bubble and on the other by an unbounded region containing the same fluid. The inner boundary has been approximated by a porous pseudowall. The resulting mathematical model reduces to other cases such as the plane wall jet and the free curved jet. A two-parameter family of solutions to the resulting nonlinear equation for the outer half of the jet correlates well with experimental data.


Sign in / Sign up

Export Citation Format

Share Document