Development of Test System for Subsea Tree Equipment

2013 ◽  
Vol 440 ◽  
pp. 222-227
Author(s):  
Bao Ping Cai ◽  
Yong Hong Liu ◽  
Yan Ting Zhang ◽  
Jiang Tao Ma ◽  
Yun Wei Zhang ◽  
...  

A test system for subsea tree equipment is developed for tree function testing after repair. The test system mainly consists of hydraulic unit and electric unit. The hydraulic unit is developed by revamping an old hydraulic power unit, which consist of six components, including reservoir, flush/fill pump circuit, high pressure hydraulic pump circuits, accumulator group, hydraulic supply circuits and fluid return circuit. The electric unit for subsea tree is developed by using NI Compact DAQ system, In order to control the hydraulic unit and acquire the pressure signals easily. The test procedures for flowloops, valve, and hydrostatic hydraulic pressure cycling are proposed based on the factory acceptance testing of subsea tree. A test for a repaired subsea tree is performed by using the developed test system. The results show that the repaired subsea tree is good enough after repair, and verify that the developed test system works well.

Author(s):  
Jianwei Cao ◽  
Linyi Gu ◽  
Feng Wang ◽  
Minxiu Qiu

Switchmode hydraulic power supply is a new kind of energy-saving pressure converting system, which is originally proposed by the authors. It is mainly applied in multiple-actuator hydraulic systems, and installed between hydraulic pump and actuators (one switchmode hydraulic power supply for one actuator). It can provide pressure or flow rate that is adapted to the consumption of each actuator in the system by boosting or bucking the pressure, with low power loss, and conveniently, through high-speed switch valves, just like a hydraulic pressure transformer. There are two basic types of switchmode hydraulic power supply: pressure boost and pressure buck. Their structures and working principles are introduced. The dynamic characteristics of two typical types of switchmode hydraulic power supply, the pressure boost type and the pressure buck type, were analyzed through simulations and experiments. The performances were evaluated, and improvements on the efficiency of switchmode hydraulic power supply were proposed.


1946 ◽  
Vol 154 (1) ◽  
pp. 178-208 ◽  
Author(s):  
F. H. Towler

The first hydraulic press invented by Joseph Bramah in 1795 employed the direct-hydraulic system; i.e. hydraulic pressure was directly supplied to the press cylinder by a hydraulic pump and, therefore, the pressure exerted by the press ram was directly proportional to the pressure supplied by the pump, and the speed of the press ram was directly proportional to the delivery of the pump. Later developments in the use of hydraulic power resulted in the invention of the hydraulic accumulator to store liquid under pressure. With the accumulator system the speed and pressure exerted by the press ram are not controlled by the pump, and in fact they cannot be controlled with any precision; also there is considerable wastage of power when the press ram is operating at less than full pressure. The advent of the high-speed reciprocating ram pump has produced the modern direct-hydraulic system in which the press and pump form one self-contained unit. The power to drive the pump is in direct proportion to the work done by the press, and the speed and pressure exerted by the press ram can be precisely controlled. The author considers that a saving of at least 75 per cent in electric power can be made by conversion from the accumulator system to the direct-hydraulic system. Indicator diagrams are reproduced in the paper to show the saving in power which can be achieved by the direct-hydraulic system, and a comparison is made between the power consumption, in kilowatt-hours, of a direct-hydraulic cartridge-drawing press and a mechanical double-rack press doing the same operation. The paper includes a number of illustrations of direct-hydraulic presses, ranging from those of Bramah to present-day types.


1975 ◽  
Author(s):  
D. A. Chirichella ◽  
R. W. Jack ◽  
E. A. Baniak

Author(s):  
Nalin Verma ◽  
Kenneth A. Cunefare ◽  
Ellen Skow ◽  
Alper Erturk

A hydraulic pressure energy harvester (HPEH) device, which utilizes a housing to isolate a piezoelectric stack from the hydraulic fluid via a mechanical interface, generates power by converting the dynamic pressure within the system into electricity. Prior work developed an HPEH device capable of generating 2187 microWatts from an 85 kPa pressure ripple amplitude using a 1387 mm3 stack. A new generation of HPEH produced 157 microWatts at the test conditions of 18 MPa static pressure and 394 kPa root-mean-square pressure amplitude using a 50 mm3 stack, thus increasing the power produced per volume of piezoelectric stack principally due to the higher dynamic pressure input. The stack and housing design implemented on this new prototype device yield a compact, high-pressure hydraulic pressure energy harvester designed to withstand 35 MPa. The device, which is less than a 2.54 cm in length as compared to a 5.3 cm length of a previous HPEH, was statically tested up to 21.9 MPa and dynamically tested up to 19 MPa with 400 kPa root-mean-square dynamic pressure amplitude. An inductor was included in the load circuit in parallel with the stack and the load resistance to increase the power output of the device. A previously developed electromechanical power output model for this device that predicts the power output given the dynamic pressure ripple amplitude is compared to the power results. The power extracted from this device would be sufficient to meet the proposed applications of the device, which is to power sensor nodes in hydraulic systems.


1983 ◽  
Vol 17 (4) ◽  
pp. 571-586 ◽  
Author(s):  
H. J. Johnson ◽  
S. J. Northup ◽  
P. A. Seagraves ◽  
P. J. Garvin ◽  
R. F. Wallin

Author(s):  
Chris Alexander ◽  
Salem Talbi ◽  
Richard Kania ◽  
Jon Rickert

Abstract A study was conducted to evaluate two composite repair technologies used to reinforce severe corrosion and thru-wall leaking defects in thin-walled pipe materials; conditions where the welding of conventional Type B steel sleeves cannot be conducted. This program involved the reinforcement of simulated 85% corrosion defects in 6.625-inch × 0.157-inch, Grade X52 pipe materials subjected to cyclic pressure and burst testing. The test matrix also included repaired pipe samples with thru-wall defects that were pressurized using nitrogen gas and buried for 90 days. The program was comprehensive in that it evaluated the following elements involving a total of 81 reinforced corrosion defects. • Corrosion features with a depth of 85% of the pipe’s nominal wall thickness in thin-walled pipe material (i.e., 0.157 inches, or 4 mm). • Thru-wall defects having a diameter of 0.125 inches (3 mm). • Repairs made with leaking defects having 100 psig (690 kPa) internal pressure. • Strain gage measurement made in non-leaking 85% corrosion defects; it should be noted that the remaining “15%” ligament was 0.024 inches (0.6 mm); to the author’s knowledge, no high-pressure testing has ever been conducted on such a thin remaining wall. • Long-term 90-day test that included pressurization with nitrogen gas, followed by relatively aggressive pressure cycling up to 80% SMYS followed by burst testing. This is the first comprehensive study conducted by a major transmission pipeline operator evaluating the performance of competing composite technologies used to reinforce severe corrosion features with thru-wall defects. The reinforcement of leaks has not been accepted by regulatory bodies such as the Canadian Energy Regulator (CER), or the U.S. Pipeline and Hazardous Materials Safety Administration (PHMSA). A goal of the current study is to validate composite repair technologies as a precursor to regulatory approval. The results of this study indicate that viable composite repair technologies exist with capabilities to reinforce leaks in pipelines that experience operating conditions typical for gas transmission systems (i.e., minimal pressure cycling).


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2548
Author(s):  
Wei Huang ◽  
Zhe Zhang ◽  
Jun He ◽  
Bin Du ◽  
Changrui Liao ◽  
...  

We demonstrate a silica diaphragm-based fiber tip Fabry–Perot interferometer (FPI) for high-pressure (40 MPa) sensing. By using a fiber tip polishing technique, the thickness of the silica diaphragm could be precisely controlled and the pressure sensitivity of the fabricated FPI sensor was enhanced significantly by reducing the diaphragm thickness; however, the relationship between the pressure sensitivity and diaphragm thickness is not linear. A high sensitivity of −1.436 nm/MPa and a linearity of 0.99124 in hydraulic pressure range of 0 to 40 MPa were demonstrated for a sensor with a diaphragm thickness of 4.63 μm. The achieved sensitivity was about one order of magnitude higher than the previous results reported on similar fiber tip FPI sensors in the same pressure measurement range. Sensors with a thinner silica diaphragm (i.e., 4.01 and 2.09 μm) rendered further increased hydraulic pressure sensitivity, but yield a significant nonlinear response. Two geometric models and a finite element method (FEM) were carried out to explain the nonlinear response. The simulation results indicated the formation of cambered internal silica surface during the arc discharge process in the fiber tip FPI sensor fabrication.


Sign in / Sign up

Export Citation Format

Share Document