The Simulation Study of Asynchronous Motor Based on dq Coordinate System

2013 ◽  
Vol 441 ◽  
pp. 484-487
Author(s):  
Yi Ming Li ◽  
Jun Rong

With the improvement of modem science and technology, asynchronous motor plays more and more important role in modem industrial life, and asynchronous motor has the broadest application and requirement in all kind of motors. The paper firstly builds the mathematical model of asynchronous motor in dq coordinate system, then establishes the simulation models of asynchronous motor based on Matlab/Simulink. The last the paper gives the simulation results and analyzes the simulation results. The results prove that the theoretical analysis of asynchronous motor in dq coordinate system is correct completely, and it lays a solid foundation for the study of control method for asynchronous motor.

2011 ◽  
Vol 383-390 ◽  
pp. 5945-5950
Author(s):  
Yan Hu ◽  
Zhen Guang ◽  
Xiao Yu Wang

A driving system for gearless traction machine plays an very important role in controlling elevator’s running. And its performances have a direct effect on the elevator’s performance. On the basic of the mathematical model of the gearless permanent magnetic synchronous machine (PMSM), id=0 vector control method and space vector pulse width modulation method are used in the control system. Then making a simulation on the system designed by MATLAB/SIMULINK. The simulation results show that the control method is feasible.


Author(s):  
Denoun Hakim ◽  
Benyahia Nabil ◽  
Zaouia Mustapha ◽  
Benamrouche Nacereddine ◽  
Salah Haddad ◽  
...  

Multilevel inverters have seen an increasing popularity in the last few years for medium- and high-voltage applications. The most popular has been the three-level neutral clamped inverter. Multilevel inverters synthesize output voltage from more than two voltage levels. Thus, the output signal spectrum is significantly improved in comparison with the classical two-level converters. This chapter discusses modelling and control of a Neutral Point Clamped (NPC) inverter which operates with the PWM switching pattern using a DSP. The mathematical model of the NPC inverter is carried out using conversion and connection functions for an easier understanding of the system operation. Simulation results using MATLAB program are reported, and it is shown that the performances obtained for driving an asynchronous motor using this inverter are very promising. Finally, analysis of the theoretical and the experimental results is carried out in order to validate the effectiveness of the proposed control solution.


2014 ◽  
Vol 654 ◽  
pp. 191-195
Author(s):  
Rui Peng ◽  
Yue Nan Zeng ◽  
Jian Tang ◽  
Kang Ping Chen

For the permanent magnet synchronous linear motor’s (PMSLM) force ripple, the mathematical model of detent force is established in this paper, and presents a suppression strategy based on neural network. By the designing of BP neural network force ripple observer, theoretical analysis shows can effectively restrain the force ripple. Simulation results show the correctness and validity of the suppression strategy.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2015 ◽  
Vol 778 ◽  
pp. 259-263
Author(s):  
Fa Jun Zhang ◽  
Lin Zi Li ◽  
Hui Lin ◽  
Yin Lin Pu ◽  
Zhu Xin

Various uncertain factors affect the movement of the welding robot, thus welding gun tend to deviate from the theory of welding position which reduces the welding accuracy, of which the revolute pair clearance have an greater effect on the movement of the welding robot. In order to study the influence of revolute pair clearance to the end pose accuracy of welding robot, the mathematical model of revolute pair clearance was established, and the software SolidWorks was used for establishing the welding robot model, making simulations of the mechanical arm with joint clearance and no joint clearance. At last, the movement characteristic of the hinge shaft is attained. The simulation results showed that the shaft velocity and displacement of mechanical arm with joint clearance has a certain degree of fluctuation, which affecting the end pose accuracy of welding robot , and reducing the movement stability and the welding accuracy of welding robot.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


Author(s):  
Felipe Ribolla Masetti ◽  
Pedro Cardozo de Mello ◽  
Guilherme F. Rosetti ◽  
Eduardo A. Tannuri

This paper presents small-scale low-speed maneuvering tests with an oceanographic research vessel and the comparison with mathematical model using the real time maneuvering simulator developed by the University of São Paulo (USP). The tests are intended to verify the behavior of the vessel and the mathematical model under transient and low speed tests. The small-scale tests were conducted in deep and shallow waters, with a depth-draft ratio equal to 1.28, in order to verify the simulator ability to represent the vessel maneuverability on both depth conditions. The hydrodynamic coefficients used in the simulator model were obtained by CFD calculations and wind tunnel model tests carried out for this vessel. Standard turning circle and accelerating turn maneuvers were used to compare the experimental and numerical results. A fair agreement was achieved for shallow and deep water. Some differences were observed mainly in the initial phase of the accelerating turn test.


Author(s):  
Quyang Ma ◽  
Guoan Yang ◽  
Mengjun Li

An elbow-shaped surge tank is proposed to suppress the pressure pulsations. The transfer matrix method was developed and the mathematical model was established to predict the distribution of pressure pulsations in the piping system (on which a surge tank was already installed) with an elbow-shaped surge tank. Simulation work of the whole piping system was performed. The results show that the elbow-shaped surge tank has good performance to attenuate the pressure pulsations. The frequency analysis shows that the amplitude for the first pulsation frequency is attenuated to a low level. The impulse response was analyzed to examine the efficiency of suppressing pulsations by using the suppressor. The theoretical analysis showed that there exists the optimal suppression performance when setting the distance between the elbow-shaped surge tank and the existing one. Meanwhile, modifying the ratio of length to diameter with a fixed surge volume could also impact the pressure pulsations. The analysis results can be used as a reference in designing and installing the elbow-shaped surge tank.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


2009 ◽  
Vol 16 (5) ◽  
pp. 467-480 ◽  
Author(s):  
Nader Vahdati ◽  
Mehdi Ahmadian

Passive fluid mounts are used in the fixed wing applications as engine mounts. The passive fluid mount is placed in between the engine and the fuselage to reduce the cabin's structure- borne noise and vibration generated by the engine.To investigate the benefits of passive fluid mounts used in conjunction with tuned vibration absorbers (TVA), a simple mathematical model is developed. This mathematical model includes the mathematical model of a passive fluid mount, a TVA, and a spring representing the fuselage structure. The simulation results indicate that when passive fluid mounts are used in conjunction with TVAs, an active suspension system behavior is nearly created.


Sign in / Sign up

Export Citation Format

Share Document