The Experimental Study of the Influence of the Foot Articulated Structure on the Biped Robot Walking

2013 ◽  
Vol 461 ◽  
pp. 924-929
Author(s):  
Xiao Chun Hu ◽  
Xiao Peng Li ◽  
Qing Qing Zhang ◽  
Bao Zhao ◽  
Qin Xia

Abstract: Purpose:By investigating the variation of the human walking gait kinematics with respect to the foot deformation constraint, prove that bionic design of feet are the necessity for biped robots to imitate human walking better in terms of flexibility, stability and efficiency. The results will be significant for future research and development of biped robots. Methods: A human being was assumed as a perfect biped robot which had ideal motion drive and control. The walking gait parameters of two healthy men with foot deformation unconstrained and constrained were tested respectively by the inertia motion capture suit, and then they were processed by programming and analyzed by comparison. Results: The data analysis showed that when subjects walked with foot deformation constrained, their angular displacements of lower limb joints generally increased, the curves of angular velocity and accelerations fluctuated in certain walking phases, the walking pace and stride length decreased obviously, the single support phase shortened while the double support phase lengthened. At the same time, subjects felt subjectively that their body motion was less flexible, the walking posture was difficult to control, and the walking stability was more strenuous to keep. Conclusion: Combining the logical analogies with the detailed experimentation results, it is inferred that biped robots with rigid feet will have to suffer awkward and unstable walking gait, heavier and strenuous steps, and lower energy efficiency while walking. The paper concludes the necessity of bionic design of the robot feet for improving the walking quality of the biped robots. The conclusion and the experiment data will be of significant value for future work of robot design and evaluation.

2013 ◽  
Vol 325-326 ◽  
pp. 1076-1082
Author(s):  
Seyed Mehdi Torklarki ◽  
Mohammad Danesh

Evaluation of 9-DOF biped robots based on designated smooth and stable trajectories with two added toes is a challenging problem that is the focus of this paper. Simultaneously rotation of feet and toes is considered, which allows the robot to walk more efficiently and like a human being. A desired trajectory for the lower body is designed to increase the stability margin. This obtained by fitting proper polynomials at appropriate break points. Then, the upper body motion is planned based on the Zero Moment Point (ZMP) criterion to provide a stable motion for the biped robot. Next, dynamics equations are obtained for both single support phase (SSP) and double support phase (DSP). On the other hand, two biped robots, which one accompanied by toes, are also compared. Simulation results reveal that the biped robots with toes have better stability margin, less power consumption and more vertical reaction force.


2021 ◽  
Vol 11 (5) ◽  
pp. 2342
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation methods, it is usually assumed that the torso keeps vertical during walking. It is very intuitive and simple. However, it may not be the most efficient. In this paper, we propose a gait pattern with torso pitch motion (TPM) during walking. We also present a gait pattern with torso keeping vertical (TKV) to study the effects of TPM on energy efficiency of biped robots. We define the cyclic gait of a five-link biped robot with several gait parameters. The gait parameters are determined by optimization. The optimization criterion is chosen to minimize the energy consumption per unit distance of the biped robot. Under this criterion, the optimal gait performances of TPM and TKV are compared over different step lengths and different gait periods. It is observed that (1) TPM saves more than 12% energy on average compared with TKV, and the main factor of energy-saving in TPM is the reduction of energy consumption of the swing knee in the double support phase and (2) the overall trend of torso motion is leaning forward in double support phase and leaning backward in single support phase, and the amplitude of the torso pitch motion increases as gait period or step length increases.


2018 ◽  
Vol 40 (4) ◽  
pp. 407-424
Author(s):  
Tran Thien Huan ◽  
Ho Pham Huy Anh

This paper proposes a new way to optimize the biped walking gait design for biped robots that permits stable and robust stepping with pre-set foot lifting magnitude. The new meta-heuristic CFO-Central Force Optimization algorithm is initiatively applied to optimize the biped gait parameters as to ensure to keep biped robot walking robustly and steadily. The efficiency of the proposed method is compared with the GA-Genetic Algorithm, PSO-Particle Swarm Optimization and Modified Differential Evolution algorithm (MDE). The simulated and experimental results carried on the prototype small-sized humanoid robot demonstrate that the novel meta-heuristic CFO algorithm offers an efficient and stable walking gait for biped robots with respect to a pre-set of foot-lift height value.


2019 ◽  
Vol 25 ◽  
pp. 81
Author(s):  
Majid Anjidani ◽  
M.R. Jahed Motlagh ◽  
M. Fathy ◽  
M. Nili Ahmadabadi

Designing a stable walking gait for biped robots with point-feet is stated as a constrained nonlinear optimization problem which is normally solved by an offline numerical optimization method. On the result of an unknown modeling error or environment change, the designed gait may be ineffective and an online gait improvement is impossible after the optimization. In this paper, we apply Generalized Path Integral Stochastic Optimal Control to closed-loop model of planar biped robots with point-feet which leads to an online Reinforcement Learning algorithm to design the walking gait. We study the ability of the proposed method to adapt the controller of RABBIT, which is a planar biped robot with point-feet, for stable walking. The simulation results show that the method, starting a dynamically unstable initial gait, quickly compensates the modeling error and reaches to a walking with exponential stability and desired features in a new situation which was impossible by the past methods.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110119
Author(s):  
Qiaoli Ji ◽  
Zhihui Qian ◽  
Lei Ren ◽  
Luquan Ren

Ankle push-off is defined as the phase in which muscle-tendon units about the ankle joint generate a burst of positive power during the step-to-step transition in human walking. The dynamic walking of a biped robot can be effectively realized through ankle push-off. However, how to use ankle push-off to balance the walking speed and energy efficiency of biped robots has not been studied deeply. In this study, the effects of the step length (the inter-leg angle is 40°, 50°, and 60°), torque and timing of ankle push-off on the walking speed and energy efficiency of biped robots were studied. The results show that when the step length is 50°, the push-off torque is 30 N· m and the corresponding push-off timing occurs at 43% of the gait cycle, the simulated robot obtains a highly economical walking gait. The corresponding maximum normalized walking speed is 0.40, and the minimum mechanical cost of transport is 2.25. To acquire a more economical walking gait of biped robots, the amount of ankle push-off and the push-off timing need to be coordinated. The purpose of this study is to provide a reference for the influence of ankle push-off on the motion performance of biped robots.


2021 ◽  
pp. 1-11
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li ◽  
Yufeng He

Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation method, it is usually assumed that the torso remains vertial during walking. It is very intuitive and simple. However, is the gait pattern of keeping the torso vertical the most efficient? This paper presents a gait pattern in which the torso has pitch motion during walking. We define the cyclic gait of a seven-link biped robot with multiple gait parameters. The gait parameters are determined by optimization. The optimization criterion is choosen to minimize the energy consumption per unit distance of the biped robot. In order to compare the energy consumption of the proposed gait pattern with the one of torso vertical gait pattern, we generate two sets of optimal gait with various walking step lengths and walking periods. The results show that the proposed gait pattern is more energy-efficiency than the torso vertical gait pattern.


2012 ◽  
Vol 24 (3) ◽  
pp. 498-506 ◽  
Author(s):  
Yuta Hanazawa ◽  
◽  
Masaki Yamakita

In this paper, we present novel biped walking based on flat-footed Passive Dynamic Walking (PDW) with mechanical impedance at the ankles. To realize biped robot achieving high-efficient walking, PDW has attracted attention. Recently, flat-footed passive dynamic walkers with mechanical impedance at the ankles have been proposed. We show that this passive walker achieves fast, energy-efficient walking using ankle springs and inerters. For this reason, we propose novel biped walking control that mimics PDW to realize biped robots achieving fast, energy-efficient walking on level ground. First, we design a flat-footed biped robot that achieves fast, energy-efficient PDW. To achieve walking based on PDW, the biped robot then takes advantage of a virtual gravitational field that is generated by actuators. The biped robot also pushes off with the foot in the double-support phase to restore energy. By walking simulation, we show that a flat-footed biped robot achieves fast, energy-efficient walking on level ground by the proposed method.


2013 ◽  
Vol 816-817 ◽  
pp. 712-716
Author(s):  
Ahmad Ghanbari ◽  
S. Mohammad Reza S. Noorani ◽  
Hamid HajiMohammadi ◽  
Aida Parvaresh

Naturalistic walking is one of the most important purposes of researches on biped robots. A feasible way is to translate the understanding of human walking to robot walking. One of the options that affects the quality of motion in a biped robot is concerned with trajectory generation. So, in this paper it's focused on trajectory generation methods for implementing a 7-links planar walker biped robot. Also, this model is simulated by VisualNastran software package and run according to a Clinical Gait Analysis (CGA) reference that has been modified for a planar model. Lastly, the results of simulation are reported.


Author(s):  
D. Tlalolini ◽  
C. Chevallereau ◽  
Y. Aoustin

Fast human walking includes a phase where the stance heel rises from the ground and the stance foot rotates about the stance toe. This phase where the biped becomes under-actuated is not present during the walk of humanoid robots. The objective of this study is to determine if the introduction of this phase for a biped robot is useful to reduce the energy consumed in the walking. For simplicity only a planar biped is considered. In order to study the efficiency of this phase, four cyclic gaits are presented. For these gaits optimal motions with respect to the torque cost are defined for given performances of actuators. It is shown that for fast motions a foot rotation sub-phase is useful to reduce the criteria cost. In the optimization process, under-actuated phase (foot rotation phase), fully-actuated phase (flat foot phase) and over-actuated phase (double support phase) are considered.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1082
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Linear inverted pendulum model (LIPM) is an effective and widely used simplified model for biped robots. However, LIPM includes only the single support phase (SSP) and ignores the double support phase (DSP). In this situation, the acceleration of the center of mass (CoM) is discontinuous at the moment of leg exchange, leading to a negative impact on walking stability. If the DSP is added to the walking cycle, the acceleration of the CoM will be smoother and the walking stability of the biped will be improved. In this paper, a linear pendulum model (LPM) for the DSP is proposed, which is similar to LIPM for the SSP. LPM has similar characteristics to LIPM. The dynamic equation of LPM is also linear, and its analytical solution can be obtained. This study also proposes different trajectory-planning methods for different situations, such as periodic walking, adjusting walking speed, disturbed state recovery, and walking terrain-blind. These methods have less computation and can plan trajectory in real time. Simulation results verify the effectiveness of proposed methods and that the biped robot can walk stably and flexibly when combining LIPM and LPM.


Sign in / Sign up

Export Citation Format

Share Document