Integrated Multi-Object Taguchi Method with Optical Design for Contact Lenses

2013 ◽  
Vol 479-480 ◽  
pp. 166-169
Author(s):  
Chih Ta Yen ◽  
Ing Jr Ding ◽  
Hsu Chih Cheng ◽  
Jhe Wen Ye ◽  
Jyun Min Shih

In this research, a contact lens design for myopia and astigmatism eyes was proposed. With two spherical surfaces assembled in the optical system, the design could take advantage of compacting overall volume size. But in this design, the value of spherical aberration (SA) at wide radius of contact lenses seems lower. If we corrected the design to improve the value of SA, Modulation Transfer Function (MTF) and coma aberration (TCO) value would become lower relatively. In this study, we integrated the Taguchi method and principal component analysis (PCA) to optimize the multiple quality characteristics (SA, TCO and MTF) of the contact lenses. With the combination of the methods, a set of optimum design parameters was well selected to balance the values of SA, TCO and MTF that improve the SA 25.63%, TCO 91.88% and MTF 2.4%. It was concluded that the integration of the Taguchi method and PCA succeeded in optimizing the SA, TCO and MTF values, and the contact lenses could be well designed without sacrificing system performance.

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2028
Author(s):  
Lina M. Shaker ◽  
Ahmed A. Al-Amiery ◽  
Abdul Amir H. Kadhum ◽  
Mohd S. Takriff

Many people suffer from myopia or hyperopia due to the refractive errors of the cornea all over the world. The use of high refractive index (RI), Abbe number (νd), and visible light transmittance (T%) polymeric contact lenses (CLs) holds great promise in vision error treatment as an alternative solution to the irreversible laser-assisted in situ keratomileusis (LASIK) surgery. Titanium dioxide nanoparticles (TiO2 NPs) have been suggested as a good candidate to rise the RI and maintain high transparency of a poly(methyl methacrylate) (PMMA)-TiO2 nanocomposite. This work includes a preparation of TiO2 NPs using the sol gel method as well as a synthesis of pure PMMA by free radical polarization and PMMA-TiO2 CLs using a cast molding method of 0.005 and 0.01 w/v concentrations and a study of their effect on the aberrated human eye. ZEMAX optical design software was used for eye modeling based on the Liou and Brennan eye model and then the pure and doped CLs were applied. Ocular performance was evaluated by modulation transfer function (MTF), spot diagram, and image simulation. The used criteria show that the best vision correction was obtained by the CL of higher doping content (p < 0.0001) and that the generated spherical and chromatic aberrations in the eye had been reduced.


2017 ◽  
Vol 48 (3) ◽  
pp. 559-579 ◽  
Author(s):  
Chang-Mou Wu ◽  
Ching-Hsiang Hsu ◽  
Ching-Iuan Su ◽  
Chun-Liang Liu ◽  
Jiunn-Yih Lee

In this study, the Taguchi method, analysis of variance, and principal component analysis were used to design the optimal parameters with respect to different quality characteristics for the continuous electrospinning of polyacrylonitrile nanofibrous yarn. The experiment was designed using a Taguchi L9(34) orthogonal array. The Taguchi method is a unique statistical method for efficiently evaluating optimal parameters and the effects of different factors on quality characteristics. The experimental results obtained by this method are more accurate and reliable than one-factor-at-a-time experiments. The control factors discussed in this work include the draw ratio, nozzle size, flow rate, and draw temperature. The quality characteristics taken into consideration are fiber diameter, fiber uniformity, and fiber arrangement. The parameters to optimize the different quality characteristics were obtained from the main effect plot of the signal-to-noise ratios, after which analysis of variance and confidence intervals were applied to confirm that the results were acceptable. Multiple quality characteristics were analyzed by principal component analysis from the normalized signal-to-noise ratios and the principal component score. Combining the experimental and analysis results, the optimum parameters for multiple quality characteristics were found to be a draw ratio of 2.0, a nozzle number of 22 G, a flow rate of 7 ml/h, and a draw temperature 120℃.


2018 ◽  
Vol 51 (5) ◽  
pp. 788-802 ◽  
Author(s):  
WS Yip ◽  
S To ◽  
WK Wang

Optical lenses are extensively used to enhance the performance of light-emitting diodes. Both uniformity and efficiency are important performance indicators in lens design; however, improving uniformity always lowers efficiency. In this study, the Taguchi method and principal component analysis (PCA) are integrated to optimise the lens shape for two quality objectives, namely, uniformity and efficiency. The Taguchi method was conducted twice to establish the signal/noise ratio of the two quality characteristics for calculating the principal components in PCA. Then, the optimum parameters obtained by the Taguchi method were processed by PCA. The correlated individual responses were converted to the principal components which explained most of the dataset and were considered as the single quality characteristic for the optimisation. The combined method resolved the difficulties of optimising multiple quality characteristics without sacrificing any particular quality characteristic while the traditional Taguchi method can only be applied to the single quality characteristic. A LED light source fitted with a secondary lens designed by the proposed method showed over 92% light efficiency and an improvement in uniformity.


2021 ◽  
pp. 77-85
Author(s):  
Andreas F. Borkenstein ◽  
Eva-Maria Borkenstein ◽  
Holger Luedtke ◽  
Ruediger Schmid

<b><i>Background:</i></b> The aim of the study was to analyze the objective optical properties of 2 enhanced depth of focus (EDoF) intraocular lenses (IOLs) using optical bench analysis. <b><i>Methods:</i></b> This experimental study investigates 2 new EDoF IOLs, the Alcon AcrySof IQ Vivity and the Bausch &amp; Lomb LuxSmart Crystal, on the optical bench, using OptiSpheric IOL PRO2 (Trioptics, Germany) in order to assess the optical quality according to ISO 11979 with ISO-2 Cornea. IOLs (power 22.0 D) were evaluated regarding modulation transfer function (MTF) at 50 lp/mm and Strehl ratio (SR) using a 3.0-mm and a 4.5-mm aperture. In addition, wavefront measurements were obtained using WaveMaster® IOL 2 device (Trioptics, Germany), and USAF targets were analyzed. <b><i>Results:</i></b> Centered: the MTF (mean) at 50 lp/mm (AcrySof IQ Vivity/LuxSmart Crystal) with 3.0 mm aperture was 0.250/0.257 and with 4.5 mm aperture 0.202/0.243. The SR (mean) with 3.0 mm aperture was 0.261/0.355 and with 4.5 mm aperture 0.176/0.206. Decentered by 1 mm: the MTF (mean) at 50 lp/mm (AcrySof IQ Vivity/LuxSmart Crystal) with 3.0 mm aperture was 0.266/0.247 and with 4.5 mm aperture 0.126/0.215. The SR (mean) with 3.0 mm aperture was 0.272/0.234 and with 4.5 mm aperture 0.133/0.183. Tilted by 5 degree: the MTF (mean) at 50 lp/mm (AcrySof IQ Vivity/LuxSmart Crystal) with 3.0 mm aperture was 0.221/0.360 and with 4.5 mm aperture 0.214/0.229. The SR (mean) with 3.0 mm aperture was 0.232/0.428 and with 4.5 mm aperture 0.225/0.229. The simulated visual function using USAF test targets showed corresponding qualitative results. Wavefront measurements proved a complex optical design. Higher order aberrations in the central part of the optics were modulated up to the 10th order to enhance the range of functional vision to near distance, leaving the peripheral parts of the optics aberration free or as aberration correcting. <b><i>Conclusion:</i></b> The diversity of EDOF IOLs, their optics, and their respective impact on the vision quality must be understood in order to select the appropriate IOL in each individual case. This analysis of new, innovative IOL optics based on increased negative spherical aberration may help the ophthalmic surgeon to select the IOL which meets the individual requirements of the patient for best postoperative outcomes. It seems that there is no perfect IOL that is equally suitable for all patients, but the right choice is an individual, customized approach dealing with patients’ expectations.


2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Farid Atry ◽  
Israel Jacob De La Rosa ◽  
Kevin R. Rarick ◽  
Ramin Pashaie

In the past decades, spectral-domain optical coherence tomography (SD-OCT) has transformed into a widely popular imaging technology which is used in many research and clinical applications. Despite such fast growth in the field, the technology has not been readily accessible to many research laboratories either due to the cost or inflexibility of the commercially available systems or due to the lack of essential knowledge in the field of optics to develop custom-made scanners that suit specific applications. This paper aims to provide a detailed discussion on the design and development process of a typical SD-OCT scanner. The effects of multiple design parameters, for the main optical and optomechanical components, on the overall performance of the imaging system are analyzed and discussions are provided to serve as a guideline for the development of a custom SD-OCT system. While this article can be generalized for different applications, we will demonstrate the design of a SD-OCT system and representative results for in vivo brain imaging. We explain procedures to measure the axial and transversal resolutions and field of view of the system and to understand the discrepancies between the experimental and theoretical values. The specific aim of this piece is to facilitate the process of constructing custom-made SD-OCT scanners for research groups with minimum understanding of concepts in optical design and medical imaging.


2012 ◽  
Vol 622-623 ◽  
pp. 45-50 ◽  
Author(s):  
Joydeep Roy ◽  
Bishop D. Barma ◽  
J. Deb Barma ◽  
S.C. Saha

In submerged arc welding (SAW), weld quality is greatly affected by the weld parameters such as welding current, traverse speed, arc voltage and stickout since they are closely related to weld joint. The joint quality can be defined in terms of properties such as weld bead geometry and mechanical properties. There are several control parameters which directly or indirectly affect the response parameters. In the present study, an attempt has been made to search an optimal parametric combination, capable of producing desired high quality joint in submerged arc weldment by Taguchi method coupled with weighted principal component analysis. In the present investigation three process variables viz. Wire feed rate (Wf), stick out (So) and traverse speed (Tr) have been considered and the response parameters are hardness, tensile strength (Ts), toughness (IS).


To those mathematicians who have investigated the theory of the refracting telescope, it has often, says Mr. Herschel, been objected, that little practical benefit has resulted from their speculations. Although the simplest considerations suffice for correcting that part of the aberration which arises from the different refrangibility of the different coloured rays, yet in the more difficult part of the theory of optical instruments which relates to the correction of the spherical aberration, the necessity of algebraic investigation has always been , acknowledged; although, however, the subject is confessedly within its reach, a variety of causes have interfered with its successful prosecution, and the best artists are content to work their glasses by empirical rules. In the investigations detailed in this paper, the author’s object is, first to present, under a general and uniform analysis, the whole theory of the aberration of spherical surfaces; and then to furnish practical results of easy computation to the artist, and applicable, by the simplest interpolations, to the ordinary materials on which he works. In pursuing these ends he has found it necessary somewhat to alter the usual language employed by optical writers;—thus, instead of speaking of the focal length of lenses, or the radii of their surfaces , he speaks of their powers and curvatures ; designating, by the former expression, the quotient of unity by the number of parts of any scale which the focal length is equal to; and by the latter, the quotient similarly derived from the radius in question. After adverting to some other parts of the subject of this paper, more especially to the problem of the destruction of the spherical aberration in a double or multiple lens, and to the difficulties which it involves, Mr. Herschel observes, that one condition, hitherto unaccountably overlooked, is forced upon our attention by the nature of the formulæ of aberration given in this paper; namely, its destruction not only from parallel rays, but also from rays diverging from a point at any finite distance, and which is required in a perfect telescope for land objects, and is of considerable advantage in those for astronomical use: 1st, The very moderate curvatures required for the surfaces; 2nd, That in this construction the curvatures of the two exterior surfaces of the compound lens of given focal length vary within very narrow limits, by any variation in either the refractive or dispersive powers at all likely to occur in practice; 3rd, That the two interior surfaces always approach so nearly to coincidence, that no considerable practical error can arise from neglecting their difference, and figuring them on tools of equal radii.


Author(s):  
Viacheslav S. Stadnichuk ◽  
Valentin G. Kolobrodov ◽  
Oleksii O. Mosolab ◽  
Denis Yu. Kondratenko ◽  
Dmytro I. Ryabokon

Background. Analysis of statistical data showed that in most cases the cause of the accident is driver error and, as a consequence, violation of traffic rules. In this regard, over the past 10 years, active developments in the field of recognition of road signs and other obstacles in the path of a car have been actively developing. Car manufacturers offer ready-made built-in systems, mounted behind the interior rearview mirror and connected to the car’s on-board computer, which carries out further control of the car in a critical situation. The main disadvantage of these systems of this class is the low range of recognition of road signs, the dependence of optical parameters on temperature and low light sensitivity. Objective. The purpose of the paper is to model an athermal objective for a high-resolution camera, investigate the characteristics of lenses depending on the ambient temperature. Methods. Analysis and modeling of objectives, lenses, optical glass from different materials. Results. A high-resolution camera objective for all types of cars is proposed. An athermal objective was developed for a high-resolution camera. Conclusions. The optimized athermal design of the visible spectrum objective for long-range car cameras is considered. Car cameras typically have a fixed focus, and forward-facing cameras typically require relatively long focal lengths to provide information about distant objects. The optical system for these cameras should provide high resolution, as well as operate in a wide range of ambient temperatures. The camera design parameters are derived from the functional requirements of road sign recognition at a distance of 200 m. The objective design has five lenses with spherical surfaces. The objective has a relative aperture of f/2 and a modulation transfer function (MTF) of more than 0.5 at 111 l/mm over the entire temperature range.


Sign in / Sign up

Export Citation Format

Share Document