The Structure and Thermal Properties of ZrAlYN Films Deposited by Magnetron Sputtering

2014 ◽  
Vol 488-489 ◽  
pp. 9-13
Author(s):  
Guang Xian ◽  
Hai Bo Zhao ◽  
Hong Yuan Fan ◽  
Hao Du

ZrAlYN films were prepared by magnetron sputtering at various N2/Ar flow ratio. The structure, composition and thermal properties were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectrum. The results show that the deposited ZrAlN and ZrAlYN films possessed a single NaCl-type solid solution phase. The ZrAlN film was (200) strongly predominated. The (111) peak was prominently increased in ZrAlYN films and thus the preferred orientation changed to (111) and (200) co-predomination. The crystallinity of ZrAlYN films was gradually degraded with enhanced N2/Ar flow ratio. Both ZrAlN and ZrAlYN films were exhibited a featureless fracture microstructure. The thickness of ZrAlYN films was consistently reduced due to more nitride produced on the surface of targets at higher N2/Ar flow ratio. The ZrAlYN films deposited at 1:5 N2/Ar flow ratio was proved to be the best oxidation resistance under annealing at 1000°C for 2h in air. As N2/Ar flow ratio increased, the oxidation resistance of films was inversely deteriorated due to the decreased yttrium content in films.

2013 ◽  
Vol 747-748 ◽  
pp. 765-771 ◽  
Author(s):  
Jian Sheng Yao ◽  
Ding Zhong Tang ◽  
Xiao Guang Liu ◽  
Cheng Bo Xiao ◽  
Xin Li ◽  
...  

The interfacial reactions between ceramic moulds and DZ417G and DZ125 superalloys were investigated. The microstructure and composition of the interface region were observed by optical microscope, X-ray diffraction and scanning electron microscope with energy dispersive spectroscopy. The results showed that (Al1-xCrx)2O3solid solution phase with pink color was formed from the dissolution of Cr2O3and Al2O3and vapour phase, which was transferred to the reaction surfaces. The reaction layer thicknesses of DZ417G and DZ125 alloys were about in the range of 40-50μm. The interface reaction product between DZ417G alloy and ceramic mould was TiO2and the product between DZ125 alloy and ceramic mould was HfO2.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1620
Author(s):  
Xiaomin Yuan ◽  
Haonan Zhu ◽  
Huiling Ji ◽  
Yiwei Zhang

Carbon nanotubes (CNTs), dispersed in absolute ethanol, were evenly mixed into Ti/MgH2 powders by wet milling. Then, we applied the vacuum hot-pressed sinteringmethod to the CNTs/TiMg composite materials. An optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and a field emission scanning electron microscope (FESEM) were used for the microstructure observation and phase analysis of samples. The mechanical properties were measured via the micro-vickers hardness. The results show that the main phases in the composites were Ti, Mg and C. Meanwhile, a small amount of Ti-Mg solid solution phase was also found. The cross-section morphology of the composites shows that the melted magnesium fills the grain interface during extrusion and that the composites have a better compactness.The microstructures of the composites have been greatly refined as the CNT contents increased. The structure of the composites was further refined when 0.5 wt.% CNTs were added. The fracture surface is obviously a ductile fracture. The microhardness increases obviously with the CNT content increasing. When the content of the CNTs is 1.0 wt.%, the microhardness of the composites reaches 232 HV, which is 24% higher than that of the matrix.


2012 ◽  
Vol 534 ◽  
pp. 97-100
Author(s):  
C.L. Zhong ◽  
P.A. Wei ◽  
L.E. Luo

A series of Ti1-xAlxN coatings were deposited by reactive magnetron sputtering. The content, microstructure and surface morphology of the coatings were characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of Al content on the microstructure and the oxidation resistance was studied. It was found that Ti1-xAlxN compound coating exhibits a cubic structure with (1 1 1) preferred orientations. The oxidation resistance obviously improves with the increase of Al content.


2012 ◽  
Vol 151 ◽  
pp. 28-31 ◽  
Author(s):  
Min Ming Zou ◽  
Mi Yan ◽  
Fu Jun Shang ◽  
Wei Huang ◽  
Yong Liu ◽  
...  

The Cu-30wt%Ag alloy nanopowders are prepared by induction plasma technology, and the nanopowder is successfully coated by terpineol (C10H18O). The morphology, phase composition and oxidation resistance of nanopowders are characterized by scanning electron microscopy (SEM), X-ray diffraction and thermogravimetric (TG) analysis. When the suitable processing parameters of induction plasma are chosen, the spherical morphology and average diameter about 89 nm of Cu-30wt%Ag nanopowders are obtained. Meanwhile, the Cu-Ag alloy nanopowders which are coated by terpineol are free from oxidation when temperature is below 280°C.


2007 ◽  
Vol 546-549 ◽  
pp. 1485-1488 ◽  
Author(s):  
Shi Yu Qu ◽  
Ya Fang Han ◽  
Jin Xia Song ◽  
Yong Wang Kang

The effects of Cr and Al on high temperature oxidation resistance of Nb-Si system intermetallics have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and weight gain method. The results showed that the high temperature oxidation resistance can be substantially improved by proper Cr or Al addition. The further analysis revealed that Cr promotes the formation of CrNbO4 in scale and improve the adherence between the oxide scale and the substrate. It also found that Al improves the surface morphology of oxide scale and changes oxidation products by promoting the AlNbO4 formation.


2012 ◽  
Vol 531 ◽  
pp. 23-26
Author(s):  
C.L. Zhong ◽  
L.E. Luo

A series of Cr1-xAlxN coatings were deposited by reactive magnetron sputtering. The content, microstructure and surface morphology of the coatings were characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of Al content on the microstructure, and the oxidation resistance and hardness was studied. It was found that Cr1-xAlxN compound coating exhibits a cubic structure with (1 1 1) preferred orientations. The oxidation resistance obviously improves with the increase of Al content.


2010 ◽  
Vol 154-155 ◽  
pp. 727-730 ◽  
Author(s):  
Li Jie Wang ◽  
Xiao Dong Tian ◽  
Jun Sheng Yang

The MoS2/TiN composite coating was prepared on Ti-6Al-4V by the combination of plasma diffusion and magnetron sputtering techniques. The microstructure and phase constituents of the composite coating were analyzed by scanning electron microscopy(SEM) and X-ray diffraction(XRD). The abrasion resistance of the composite coating was examined on MM-200 abrasion tester. The results revealed that the composite coating consisted of MoS2, Mo, TiN and Ti phases, and its abrasion resistance was excellent under dry friction and absolute sliding.


2005 ◽  
Vol 475-479 ◽  
pp. 3923-3926 ◽  
Author(s):  
Kyung Chul Lee ◽  
Nam Ho Kim ◽  
B.H. O ◽  
Hyoun Woo Kim

We have investigated the effect of annealing temperature on the structural property of Au thin films deposited on Si(100) substrate using the radio frequency (RF) magnetron sputtering technique. X-ray diffraction revealed that the relative intensities and FWHM of (111), (200), and (311) peaks increased and decreased, respectively, after thermal annealing at 600°C. Scanning electron microscopy indicated that after annealing at 600-700°C, Au structures agglomerated on Si(100) surfaces. Energy dispersive x-ray spectrometry (EDX) revealed that the agglomerated structure was composed of pure Au.


2013 ◽  
Vol 747-748 ◽  
pp. 582-587 ◽  
Author(s):  
Xiao Jing Xu ◽  
Qiong Wu ◽  
Sheng Kai Gong ◽  
Shu Suo Li

The oxidation kinetic curves of three Ni3Al-based single crystal alloys (IC21, IC21C and IC21CR) with different Cr and Re content were examined at 1100. The microstructures and element distributions of the oxide scales on these alloys were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectrometry (EDS). Results revealed that the oxidation resistance of these alloys was improved in the order of IC21 < IC21C < IC21CR. The oxide products of IC21 mainly consisted of NiO, α-Al2O3, NiAl2O4and a small amount of NiMoO4and MoO2. The volatilization of Mo oxides led to the oxide scale spallation from IC21C, thus deteriorated the oxidation properties. While for IC21C and IC21CR, the oxidation resistance was significantly improved. The Mo oxides in the oxide layer were greatly reduced and a continuous α-Al2O3layer was formed.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Sign in / Sign up

Export Citation Format

Share Document