Analysis of Facade Redesign for Enhanced Satisfaction and Improved Building Performance

2014 ◽  
Vol 490-491 ◽  
pp. 845-853
Author(s):  
Serik Tokbolat ◽  
Sarim Al-Zubaidy

The building envelope is known to be an important aspect of design and engineering of ultra-low energy buildings. The facade (building skin) could have the potential to redirect and filter daylight, influence frontal external wind intensity, provide natural ventilation, manage heat transfer, enhance occupant well-being, and create visual and physical connections between the inside and outside. The advances in facade technologies have been triggered in part by higher energy prices, stricter building codes, and higher occupant and owner expectations regarding the quality of the finished construction. This paper provides a comparative assessment of the effect of redesigning an existing building facade and other building improvements. It assesses the impact on external environmental conditions (wind speed and pressure) by employing computational fluid dynamics. The impact of these changes on occupant satisfaction was also gauged. It is hoped that this analysis will provide a framework for assessing benefits of improved facades in other buildings and applications

2021 ◽  
Vol 13 (12) ◽  
pp. 6875
Author(s):  
Irene Poza-Casado ◽  
Raquel Gil-Valverde ◽  
Alberto Meiss ◽  
Miguel Ángel Padilla-Marcos

Indoor air quality (IAQ) in educational buildings is a key element of the students’ well-being and academic performance. Window-opening behavior and air infiltration, generally used as the sole ventilation sources in existing educational buildings, often lead to unhealthy levels of indoor pollutants and energy waste. This paper evaluates the conditions of natural ventilation in classrooms in order to study how climate conditions affect energy waste. For that purpose, the impact of the air infiltration both on the IAQ and on the efficiency of the ventilation was evaluated in two university classrooms with natural ventilation in the Continental area of Spain. The research methodology was based on site sensors to analyze IAQ parameters such as CO2, Total Volatile Organic Compounds (TVOC), Particulate Matter (PM), and other climate parameters for a week during the cold season. Airtightness was then assessed within the classrooms and the close built environment by means of pressurization tests, and infiltration rates were estimated. The obtained results were used to set up a Computational Fluid Dynamics (CFD) model to evaluate the age of the local air and the ventilation efficiency value. The results revealed that ventilation cannot rely only on air infiltration, and, therefore, specific controlled ventilation strategies should be implemented to improve IAQ and to avoid excessive energy loss.


2014 ◽  
Vol 899 ◽  
pp. 62-65 ◽  
Author(s):  
Rastislav Ingeli ◽  
Boris Vavrovič ◽  
Miroslav Čekon

Energy demand reduction in buildings is an important measure to achieve climate change mitigation. It is essential to minimize heat losses in designing phase in accordance of building energy efficiency. For building energy efficiency in a mild climate zone, a large part of the heating demand is caused by transmission losses through the building envelope. Building envelopes with high thermal resistance are typical for low-energy buildings in general. In this sense thermal bridges impact increases by using of greater thickness of thermal insulation. This paper is focused on thermal bridges minimizing through typical system details in buildings. The impact of thermal bridges was studied by comparative calculations for a case study of building with different amounts of thermal insulation. The calculated results represent a percentage distribution of heat loss through typical building components in correlation of various thicknesses of their thermal insulations.


Solar Energy ◽  
2006 ◽  
Author(s):  
Lara V. Greden ◽  
Leon R. Glicksman ◽  
Gabriel Lo´pez-Betanzos

Performance uncertainty is a barrier to implementation of innovative technologies. This research investigates the potential of flexible design — one that enables future change — to improve the economic performance of a naturally ventilated building. The flexible design of the naturally ventilated building enables future installation of a mechanical cooling system by including features such as space for pipes and chillers. The benefits of the flexible design are energy savings, delay of capital costs and capability of mitigating the risk of a failed building (by installing the mechanical cooling system). To evaluate the flexible design, building energy simulation is conducted over a multi-year time period with stochastic outdoor temperature variables. One result is a probability distribution of the time when the maximum allowable indoor temperature under natural ventilation is exceeded, which may be “never.” Probability distributions are also obtained for energy savings and cost savings as compared to a mechanically cooled building. Together, these results allow decision-makers to evaluate the long-term performance risks and opportunities afforded by a flexible implementation strategy for natural ventilation. It is shown that the likelihood of future installation of mechanical cooling is most sensitive to design parameters. The impact of increased climate variability depends on the local climate. The probability of installing the mechanical system also depends on the comfort criteria. The results show that capital costs for cooling equipment are much greater than the present value of 10 years of cooling energy costs. This result motivates consideration of flexible design as opposed to hybrid cooling designs (which have immediate installation of mechanical cooling). Future work will study the impact of uncertain energy prices on investment attractiveness of naturally ventilated buildings. Other applications of the framework presented herein include replacing the building energy model with a model of another climate-dependent system, such as solar photovoltaic arrays.


2020 ◽  
Vol 10 (21) ◽  
pp. 7862
Author(s):  
Muhyiddine Jradi

When considering that over 80% of buildings in Denmark were built before the 1980′s, a holistic energy retrofitting of the existing building stock is a major milestone to attain the energy and environmental targets of the country. In this work, a case study of three public schools is considered for post-retrofit process evaluation. The three schools were heavily retrofitted by September 2018 with energy conservation and improvement measures that were implemented targeting both the building envelope and various energy systems. A technical evaluation of the energy retrofit process in the schools was carried out, when considering one year of operation after the completion of the retrofitting work. Actual data from the heating and electricity meters in the schools were collected and compared with the pre-retrofit design numbers which rely majorly on static tabulated numbers for savings evaluation. It was shown that the retrofit design numbers largely overestimate the attained savings, where the average performance gap between the expected and real numbers for the three schools is around 61% and 136% for annual heating and electricity savings, respectively. On the other hand, an alternative approach was proposed where calibrated dynamic energy performance models, which were developed for the three schools in EnergyPlus, were used to simulate the impact of implementing the retrofit measures. It was shown that implementing this approach could predict much better the impacts of the retrofit process with an average gap of around 17% for heating savings and 21% for electricity savings. Based on the post-retrofit process evaluation in the three schools, it was concluded that using dynamic model simulations has the potential of lowering the performance gap between the promised and real savings when compared to static tabulated approaches, although the savings are still generally over-estimated in both approaches.


2021 ◽  
Vol 13 (11) ◽  
pp. 6375
Author(s):  
Cristina Baglivo

This paper addresses the effects of long-term climate change on retrofit actions on a school building located in a Mediterranean climate. Dynamic energy simulations were performed using Termolog EpiX 11, first with conventional climate data and then with future year climate data exported from the CCWorldWeatherGen computational software. To date, many incentive actions are promoted for school renovations, but are these measures effective in preventing the discomfort that will be found due to overheating generated by climate change? Today, one of the main objectives in retrofit measures is the achievement of ZEB (Zero Energy Building) performance. Achieving this target requires first and foremost a high-performance envelope. This study evaluates the impact of retrofit strategies mostly applied to the school building envelope, over the years, considering three different time horizons, until 2080. Thermal performance indices and indoor operative temperature under free-floating were evaluated. The results highlight that, with a changing climate, it is no longer possible to assume a constant static condition to evaluate retrofit actions, but it is necessary to develop a predictive mathematical model that considers the design variability for future years. There is an urgent necessity to ensure both the safety and comfort of buildings while also anticipating future variations in climate.


Author(s):  
Yuanhong Zhao ◽  
Qingping Yang

Post-occupancy evaluation (POE) is a systematic method to evaluate the actual building performance against the theoretical design intents after the building has been occupied for some time, to understand how the building is performing and to capture lessons learned. The POE offers an opportunity to investigate the buildings' actual performance based upon the occupants' satisfaction levels in the aspects of building overall design, indoor environmental quality, thermal comfort, etc. However, as the key part of POE, occupant satisfaction assessment (OSA) is a missing link in the building performance evaluation (BPE) domain, and there is not a systematic evaluation method for the OSA. Moreover, it is time-consuming and error-prone to conduct the OSA manually. This paper presents from the end-user's satisfaction perspective a semantic post-occupancy evaluation ontology (POEontology) to facilitate the occupant satisfaction assessment of buildings, with the ultimate aim of optimizing building operation guidelines, and improving occupants' use experience quality and well-being. An ontology-based knowledge model has been developed to capture the fragmented knowledge of building use satisfaction assessment in the POE domain, with the benchmarking evaluation rules encoded in Semantic Web Rule Language (SWRL) to enable automatic rule-based rating and reasoning. This ontology model also enables the effective OSA-related knowledge retrieving and sharing, and promotes its implementation in the POE domain. A field study has been conducted based upon the Building Use Study (BUS) methodology to validate the proposed ontology framework.


2021 ◽  
Author(s):  
◽  
Brittany Grieve

<p>This thesis explored the impact of thermal insulation on the energy performance of New Zealand air-conditioned commercial office buildings. A sample of calibrated energy models constructed using real building performance data and construction information was used to ensure that the results produced were as realistic as possible to the actual building performance of New Zealand commercial office buildings. The aim was to assess how different climates and building attributes impact thermal insulation's ability to reduce energy consumption in New Zealand commercial office buildings.   Driven by the ever increasing demands for healthier, more comfortable, more sustainable buildings, building regulations have steadily increased the levels of insulation they require in new buildings over time. Improving the thermal properties of the building envelope with the addition of thermal insulation is normally used to reduce the amount of heating and cooling energy a building requires. Thermal insulation reduces the conductive heat transfer through the building envelope and with a higher level of thermal resistance, the less heat would transfer through the envelope. Consequently, the common expectation is that the addition of thermal insulation to the building envelope will always reduce energy consumption. However, this assumption is not always the case. For internal load dominated buildings located in certain climates, the presence of any or a higher level of thermal insulation may prevent heat loss through the wall, increasing the cooling energy required. This issue is thought to have not been directly examined in literature until 2008. However, an early study undertaken in New Zealand in 1996 found that for climates similar or warmer than Auckland, the addition of insulation could be detrimental to an office building's energy efficiency due to increased cooling energy requirements.  The energy performance of a sample of 13 real New Zealand office building energy models with varying levels of thermal insulation in 8 locations was examined under various scenarios. A parametric method of analysis using building energy modelling was used to assess the energy performance of the buildings. Buildings were modelled as built and standardised with the current NZS4243:2007 regulated and assumed internal load and operational values. The effect the cooling thermostat set point temperature had on the buildings' energy performance at varying levels of insulation was also tested.   The study concluded that the use of thermal insulation in New Zealand office buildings can cause an increase in cooling energy for certain types of buildings in any of the eight locations and thermal insulation levels explored in the study. The increase in cooling energy was significant enough to increase the total energy consumption of two buildings when modelled as built. These buildings were characterised by large internal loads, low performance windows with high window to wall ratios and low surface to volume ratios. The current minimum thermal resistance requirements were found to not be effective for a number of buildings in North Island locations.</p>


2021 ◽  
Author(s):  
◽  
Brittany Grieve

<p>This thesis explored the impact of thermal insulation on the energy performance of New Zealand air-conditioned commercial office buildings. A sample of calibrated energy models constructed using real building performance data and construction information was used to ensure that the results produced were as realistic as possible to the actual building performance of New Zealand commercial office buildings. The aim was to assess how different climates and building attributes impact thermal insulation's ability to reduce energy consumption in New Zealand commercial office buildings.   Driven by the ever increasing demands for healthier, more comfortable, more sustainable buildings, building regulations have steadily increased the levels of insulation they require in new buildings over time. Improving the thermal properties of the building envelope with the addition of thermal insulation is normally used to reduce the amount of heating and cooling energy a building requires. Thermal insulation reduces the conductive heat transfer through the building envelope and with a higher level of thermal resistance, the less heat would transfer through the envelope. Consequently, the common expectation is that the addition of thermal insulation to the building envelope will always reduce energy consumption. However, this assumption is not always the case. For internal load dominated buildings located in certain climates, the presence of any or a higher level of thermal insulation may prevent heat loss through the wall, increasing the cooling energy required. This issue is thought to have not been directly examined in literature until 2008. However, an early study undertaken in New Zealand in 1996 found that for climates similar or warmer than Auckland, the addition of insulation could be detrimental to an office building's energy efficiency due to increased cooling energy requirements.  The energy performance of a sample of 13 real New Zealand office building energy models with varying levels of thermal insulation in 8 locations was examined under various scenarios. A parametric method of analysis using building energy modelling was used to assess the energy performance of the buildings. Buildings were modelled as built and standardised with the current NZS4243:2007 regulated and assumed internal load and operational values. The effect the cooling thermostat set point temperature had on the buildings' energy performance at varying levels of insulation was also tested.   The study concluded that the use of thermal insulation in New Zealand office buildings can cause an increase in cooling energy for certain types of buildings in any of the eight locations and thermal insulation levels explored in the study. The increase in cooling energy was significant enough to increase the total energy consumption of two buildings when modelled as built. These buildings were characterised by large internal loads, low performance windows with high window to wall ratios and low surface to volume ratios. The current minimum thermal resistance requirements were found to not be effective for a number of buildings in North Island locations.</p>


2017 ◽  
Vol 33 (4) ◽  
pp. 1347-1367 ◽  
Author(s):  
Henry V. Burton ◽  
Gregory Deierlein ◽  
David Lallemant ◽  
Yogendra Singh

The relationship between the earthquake performance of an inventory of buildings and the seismic resilience of a residential community is examined, by quantifying the immediate post-earthquake reduction and recovery of the shelter-in-place housing capacity. The effect of several mitigation strategies that involve replacing portions of the existing building stock with an enhanced seismic performance system is evaluated. The impact on community resilience is assessed based on the immediate and cumulative loss of permanent housing occupancy as well as the time to recover some fraction of the pre-earthquake housing capacity. The results show how the slope of the recovery curve for occupiable housing during different periods following the event can be linked to the distribution of building damage. In addition to limiting major damage, enhanced building seismic performance is shown to reduce aggregate losses over the recovery period, thereby having a significant effect on both the safety and resilience of residential communities.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kyosuke Hiyama

Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values.


Sign in / Sign up

Export Citation Format

Share Document