Research on Integration Design of Automobile Waste Heat Thermoelectric Generation Exchanger and Engine Muffler

2014 ◽  
Vol 494-495 ◽  
pp. 51-54
Author(s):  
Jiao Long Xie

The thermoelectric generator (TEG) recovering waste heat from the exhaust has became a potential technical issue, due to its characters of pollution-free, no moving parts, reliability and high efficiency. There exist arrangement on the chassis and the exhaust backpressure of whole system will increase of these two problems, when integrating TEG in the car of TEG and the muffler is to integrate the thermoelectric module on the surface muffler, it can effectively reduce the size of TEG, also reduce its weight and structural complexity. It also reduced the backpressure of TEG, meanwhile solved the compatibility issues with other components of exhaust system. The structural integration laid the foundation to achieve the large-scale use of thermoelectric materials in the car.

2018 ◽  
Vol 19 (6) ◽  
pp. 619-626
Author(s):  
Artur Nemś ◽  
Mikołaj Simiński ◽  
Magdalena Nemś ◽  
Tomasz Magiera

This paper presents a calculation algorithm for a thermoelectric generator fitted in the exhaust system of a combustion engine. The viability of the presented calculation method was verified on an actual combustion engine. The calculations were performed for a BMW engine, and the generator design was based on a prototype from the same manufacturer. The paper includes calculations of the thermal cycle and of the parameters of exhaust gases from the engine. Subsequent calculations cover heat transfer from exhaust gases to the thermoelectric module and the amount of electric energy obtained from a series of modules. In the last part, the focus is on the influence of engine speed on the performance of the thermoelectric generator.


Author(s):  
Min Chen ◽  
Junling Gao ◽  
Zhengdong Kang ◽  
Jianzhong Zhang

A thermoelectric generation system (TEGS) used in the practical industry of waste heat recovery consists of the fluidic heat sources, the external load circuitry, and many thermoelectric modules (TEMs) connected as a battery bank. In this paper, a system-level model is proposed to seamlessly integrate the complete fluid-thermal-electric-circuit multiphysics behaviors in a single circuit simulator using electrothermal analogy. First, a quasi one-dimension numerical model for the thermal fluids and their nonuniform temperature distribution as the boundary condition for TEMs is implemented in simulation program with integrated circuit emphasis (SPICE)-compatible environment. Second, the electric field calculation of the device-level model is upgraded to reflect the resistive behaviors of thermoelements, so that the electric connections among spatially distributed TEMs and the load circuitry can be freely combined in the simulation. Third, a hierarchical and TEM-object oriented strategy are developed to make the system modeling as well as the design scalable, flexible, and programmable. To validate the proposed system model, a TEGS, including eight TEMs is constructed. Through comparisons between simulation results and experimental data, the proposed model shows sufficient accuracy so that a straightforward cooptimization of the entire TEGS of large scale can be carried out.


2000 ◽  
Vol 124 (1) ◽  
pp. 110-116 ◽  
Author(s):  
A. F. Massardo ◽  
C. F. McDonald ◽  
T. Korakianitis

Microturbines and fuel cells are currently attracting a lot of attention to meet future users needs in the distributed generation market. This paper addresses a preliminary analysis of a representative state-of-the-art 50-kW microturbine coupled with a high-temperature solid-oxide fuel cell (SOFC). The technologies of the two elements of such a hybrid-power plant are in a different state of readiness. The microturbine is in an early stage of pre-production and the SOFC is still in the development phase. It is premature to propose an optimum solution. Based on today’s technology the hybrid plant, using natural gas fuel, would have a power output of about 389 kW, and an efficiency of 60 percent. If the waste heat is used the overall fuel utilization efficiency would be about 80 percent. Major features, parameters, and performance of the microturbine and the SOFC are discussed. The compatibility of the two systems is addressed, and the areas of technical concern, and mismatching issues are identified and discussed. Fully understanding these, and identifying solutions, is the key to the future establishing of an optimum overall system. This approach is viewed as being in concert with evolving technological changes. In the case of the microturbine changes will be fairly minor as they enter production on a large scale within the next year or so, but are likely to be significant for the SOFC in the next few years, as extensive efforts are expended to reduce unit cost. It is reasonable to project that a high performance and cost-effective hybrid plant, with high reliability, will be ready for commercial service in the middle of the first decade of the 21st century. While several microturbines can be packaged to give an increased level of power, this can perhaps be more effectively accomplished by coupling just a single gas turbine module with a SOFC. The resultant larger power output unit opens up new market possibilities in both the industrial nations and developing countries.


2013 ◽  
Vol 365-366 ◽  
pp. 285-288
Author(s):  
Sheng Li ◽  
Qing Hui Zeng ◽  
Xin Hua Yao ◽  
Jian Zhong Fu

Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical, civil, and aerospace engineering systems. Typically, the waste heat from spindle units of machine tools creates obvious potential for thermoelectric generation. The structure of heat sinks on a thermoelectric generator has a great effect on the output voltage of the thermoelectric generator due to the temperature difference between hot and cold sides induced by heat transfer, so several typical structures of heat sinks are studied under different rotation speed of the spindle. According to the simulation study, the thermal resistance of heat sinks was presented. In the experiment, the output voltages of a thermoelectric generator were measured under different rotation speed with different structures of heat sinks. Experiment and simulation shows that the two pipes structure of the heat sink can help the generator to produce more power.


2006 ◽  
Vol 46 ◽  
pp. 104-110 ◽  
Author(s):  
Gang Chen

Energy transport in nanostructures differs significantly from macrostructures because of classical and quantum size effects on energy carriers. Experimental results show that the thermal conductivity values of nanostructures such as superlattices are significantly lower than that of their bulk constituent materials. The reduction in thermal conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices that convert waste heat into electricity. Superlattices grown by thin-film deposition techniques, however, are not suitable for large scale applications. Nanocomposites represent one approach that can lead to high thermoelectric figure merit. This paper reviews the current understanding of thermal conductivity reduction mechanisms in superlattices and presents theoretical studies on thermoelectric properties in semiconducting nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials.


2013 ◽  
Vol 154 (3) ◽  
pp. 60-71
Author(s):  
Krzysztof WOJCIECHOWSKI ◽  
Jerzy MERKISZ ◽  
Paweł FUĆ ◽  
Joanna TOMANKIEWICZ ◽  
Rafał ZYBAŁA ◽  
...  

The work presents experimental results of performance tests and theoretical calculations for the thermoelectric generator TEG fitted in the exhaust system of a 1.3 dm3 JTD engine. Benchmark studies were carried out to analyze the performance of the thermoelectric modules and total TEG efficiency. Additionally the investigation of combustion engine’s power drop casued by exhaust gasesflow resistance is presented. The detailed studies were performed using a new prototype of the thermoelectric generator TEG equipped with 24 BiTe/SbTe modules with the total nominal power of 168 W. The prototypical device generates maximal power of200 Wfor the exhaus gases massflow rate of 170 kg-h-1 and temperature of280 oC. Power drop caused by the flow resistance of gases ranges between 15 and 35 mbarfor mass flow rate 100-180 kg-h-1. We predict that the application of the new thermoelectric materials recently developed at AGH would increase the TEG power by up to 1 kW, would allow the increase of the powertrain system efficiency by about 5 %, and a corresponding reduction of C02 emission.


2014 ◽  
Vol 979 ◽  
pp. 421-425 ◽  
Author(s):  
Narong Sangwaranatee

This research studies the alternative way of electricity generating from the waste heat of economy oven by using 4 modules of thermoelectric modules. The hot side of thermoelectric module is attached to the heat plate while the cold side is installed on the rectangular, plate-fin heat exchanger. Variety of system adjustments were used during this study in terms of finding the maximum electric power rate. Adjusting the heating value and the electrical resistance to the thermoelectric was the procedure in this study. From the research, we found out that at the temperature of 200°C on the heat pad, the released maximum electric current was 4.5 W. The percentage of heat converting to electric current was 11.9%, with the 0.84 A and 5.35 V. The efficiency of the economy oven was 23.20%, and comes up to 23.39% while generating power via thermoelectric module.


2020 ◽  
Vol 5 (3) ◽  
pp. 58-61

Energy crisis is major problem in this era. Thermoelectric generator is a promising solution for this problem. This research aims to recover waste heat energy from automobile by converting it into electrical energy using thermoelectric generator. Thermoelectric generator is applied at automobile exhaust system to produce electrical energy from heat energy directly with a phenomenon called see-beck effect. This work develops a heat exchanger model with thermoelectric generator for automobile waste heat recovery in which heat source and cold sink are actually modeled. Main emphasis is put on effective temperature difference across the TEGs to get better performance of the exhaust waste heat recovery system. This research shows that the model is able to produce up to 2.67 W energy using 3 Numbers of TEGs in this design.


Author(s):  
Aristide F. Massardo ◽  
Colin F. McDonald ◽  
Theodosios Korakianitis

Microturbines and fuel cells are currently attracting a lot of attention to meet future users needs in the distributed generation market. This paper addresses a preliminary analysis of a representative state-of-the-art 50 kW microturbine coupled with a high-temperature solid-oxide fuel cell (SOFC). The technologies of the two elements of such a hybrid-power plant are in a different state of readiness. The microturbine is in an early stage of pre-production and the SOFC is still in the development phase. It is premature to propose an optimum solution. Based on today’s technology the hybrid plant, using natural gas fuel, would have a power output of about 389 kW, and an efficiency of 60 percent. If the waste heat is used the overall fuel utilization efficiency would about 80 percent. Major features, parameters and performance of the microturbine and the SOFC are discussed. The compatibility of the two systems is addressed, and the areas of technical concern, and mismatching issues are identified and discussed. Fully understanding these, and identifying solutions, is the key to the future establishing of an optimum overall system. This approach is viewed as being in concert with evolving technological changes. In the case of the microturbine changes will be fairly minor as they enter production on a large scale within the next year or so, but are likely to be significant for the SOFC in the next few years, as extensive efforts are expended to reduce unit cost. It is reasonable to project that a high performance and cost-effective hybrid plant, with high reliability, will be ready for commercial service in the middle of the first decade of the 21st century. While several microturbines can be packaged to give an increased level of power, this can perhaps be more effectively accomplished by coupling just a single gas turbine module with a SOFC. The resultant larger power output unit opens up new market possibilities in both the industrial nations and developing countries.


Author(s):  
Kelly Austin ◽  
Xin (James) She ◽  
John Wagner

In the transportation industry, the need to improve powertrain efficiency and provide additional power to the many amenities has encouraged research on engine waste heat recovery. Approximately one-third of the gasoline or diesel fuel energy passes through the engine’s exhaust system as heat. With ongoing developments in thermoelectric materials and module design, thermoelectric power generation has a potential use in engine heat recovery. In this study, the capability of generating usable power by thermoelectric generation from the exhaust heat of a three-cylinder, 697 cubic centimeter diesel engine was investigated. From experimental testing, the maximum power output and maximum current for a single module and four modules connected in series was 0.49W with 0.437A, and 2.81W with 0.60A, respectively. To harvest larger power magnitude from the waste heat, the modules will be configured in a co-axial manner along the pipe. Other possible applications include stationary power generation systems in which added weight does not effect overall performance.


Sign in / Sign up

Export Citation Format

Share Document