The Study of Cook-Stove Thermoelectric Generator Power

2014 ◽  
Vol 979 ◽  
pp. 421-425 ◽  
Author(s):  
Narong Sangwaranatee

This research studies the alternative way of electricity generating from the waste heat of economy oven by using 4 modules of thermoelectric modules. The hot side of thermoelectric module is attached to the heat plate while the cold side is installed on the rectangular, plate-fin heat exchanger. Variety of system adjustments were used during this study in terms of finding the maximum electric power rate. Adjusting the heating value and the electrical resistance to the thermoelectric was the procedure in this study. From the research, we found out that at the temperature of 200°C on the heat pad, the released maximum electric current was 4.5 W. The percentage of heat converting to electric current was 11.9%, with the 0.84 A and 5.35 V. The efficiency of the economy oven was 23.20%, and comes up to 23.39% while generating power via thermoelectric module.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5815
Author(s):  
Miguel Araiz ◽  
Álvaro Casi ◽  
Leyre Catalán ◽  
Patricia Aranguren ◽  
David Astrain

One of the measures to fight against the current energy situation and reduce the energy consumption at an industrial process is to recover waste heat and transform it into electric power. Thermoelectric generators can be used for that purpose but there is a lack of experimental studies that can bring this technology closer to reality. This work presents the design, optimizations and development of two devices that are experimented and compared under the same working conditions. The hot side heat exchanger of both generators has been designed using a computational fluid dynamics software and for the cold side of the generators two technologies have been analysed: a finned dissipater that uses a fan and free convection biphasic thermosyphon. The results obtained show a maximum net generation of 6.9W in the thermoelectric generator with the finned dissipater; and 10.6W of power output in the generator with the biphasic thermosyphon. These results remark the importance of a proper design of the heat exchangers, trying to get low thermal resistances at both sides of the thermoelectric modules, as well as, the necessity of considering the auxiliary consumption of the equipment employed.


2016 ◽  
Vol 685 ◽  
pp. 422-426
Author(s):  
Nikolai Belyakov ◽  
Igor Terletskii ◽  
Sergey Minaev ◽  
Sudarshan Kumar ◽  
Kaoru Maruta

A new system for converting combustion heat into electric power was proposed on the basis of countercurrent burner with thermoelectric element embedded in a wall separating incoming fresh mixture and combustion products. The wall serves as heat exchanger between combustion products and the fresh mixture. Numerical simulations showed that almost whole combustion heat may be transferred through the thermoelectric element in such system and the total thermal efficiency attained a value close to the conversion efficiency of the thermoelectric device itself.


2005 ◽  
Vol 886 ◽  
Author(s):  
Ryoji Funahashi ◽  
Toshiyuki Mihara ◽  
Masashi Mikami ◽  
Saori Urata

ABSTRACTA new adhesive material has been developed in order to obtain practically usable thermoelectric modules composed of oxide thermoelectric legs. The thermoelectric module composed of 8-pair oxide legs has been fabricated. Both hot- and cold-sides of the module were covered by alumina plates. Open circuit voltage VO and maximum power Pmax reach 0.38 V and 0.30 W, respectively at 803 K of a hot-side temperature TH and 362 K of a temperature differential ΔT between TH and cold-side temperature TC. Generating power was repeated 11 times at 873-993 K of TH and at 200-290 K of ΔT. The module was cooled down to room temperature after each generation. At third measurement internal resistance RI of the module increased by 30 %. This is due to destruction of junctions because of thermal strain. No deterioration, however, was observed in thermoelectric properties for the oxide legs.


Author(s):  
Anitha Angeline A ◽  
Jayakumar J

The performance of (Bi<sub>2</sub>Te<sub>3</sub>-PbTe) hybrid thermoelectric generator (TEG)<strong> </strong>composed of n-type Bismuth Telluride and p-type Lead Telluride semiconductor materials is presented in this paper. <strong> </strong>The effect of different performance parameters such as output voltage, output current, output power, maximum power output, open circuit voltage, Seebeck co-efficient, electrical resistance, thermal conductance, figure of merit, efficiency, heat absorbed and heat removed based on maximum conversion and power efficiency have been theoretically analyzed by varying the hot side temperature of the hybrid thermoelectric generator up to 350<sup>o</sup>C and by varying the cold side temperature from 30<sup>o</sup>C to 150<sup>o</sup>C. The results showed that a maximum power output of 21.7 W has been obtained with the use of one hybrid thermoelectric module for a temperature difference of 320<sup>o</sup>C between the hot and cold side of the thermoelectric generator at matched load resistance. The figure of merit was found to be around 1.28 which makes its usage possible in the intermediate temperature (250<sup>o</sup>C to 350<sup>o</sup>C) applications such as heating of Biomass waste, heat from Biomass cook stoves or waste heat recovery etc. It is also observed that the hybrid thermoelectric generator offers superior performance over 250<sup>o</sup>C of the hot side temperature, compared to standard Bi<sub>2</sub>Te<sub>3 </sub>modules.


2014 ◽  
Vol 494-495 ◽  
pp. 51-54
Author(s):  
Jiao Long Xie

The thermoelectric generator (TEG) recovering waste heat from the exhaust has became a potential technical issue, due to its characters of pollution-free, no moving parts, reliability and high efficiency. There exist arrangement on the chassis and the exhaust backpressure of whole system will increase of these two problems, when integrating TEG in the car of TEG and the muffler is to integrate the thermoelectric module on the surface muffler, it can effectively reduce the size of TEG, also reduce its weight and structural complexity. It also reduced the backpressure of TEG, meanwhile solved the compatibility issues with other components of exhaust system. The structural integration laid the foundation to achieve the large-scale use of thermoelectric materials in the car.


Author(s):  
Dongxu Ji ◽  
Alessandro Romagnoli

In order to design an effective thermoelectric generator (TEG) heat exchanger for waste heat recovery, an accurate model is required for system design and performance predicting. In this paper, 1-D model is developed in MATLAB, taking into consideration of the multi-physics phenomena within TEG. The proposed model is different from existing thermoelectric models which mainly focus on the thermoelectric couple or device level without providing any guidance for designing an optimal system. When optimizing some TEG parameters, the optimal value found in a device level model might not be suitable when put into a waste heat recovery system. Therefore, in order to develop an optimized TEG system with optimum output power performance, a more comprehensive thermoelectric model integrated with the other components is needed. The current model integrates the thermoelectric module with the heat exchangers. Through this study, we found that the heat exchanger and module design have an impact on the total TEG output power in waste heat recovery system and a systematic design approach is needed.


2018 ◽  
Vol 67 ◽  
pp. 02057
Author(s):  
Imansyah Ibnu Hakim ◽  
Nandy Putra ◽  
Mohammad Usman

Waste heat recovery is one way to reduce the use of fossil fuels, one of them is by using thermoelectric generator to convert waste heat into Thermoelectric Generator (TEGs) is a module that can convert heat into electrical power directly, using Seebeck effect and Peltier effect as its working principle, so it can increase efficiency of energy consumption by utilizing waste heat from an instrument that generate waste heat. The focus of this research is to find the output voltage of TEG by utilizing the temperature difference on the cold side and the heat side of the TEGs. The heat side of the module will be given heat from the heater as a simulation of the heat from hot water, and on the cold side heat pipes will be used to remove the heat on the cold side of TEGs. The result, output voltage that generated by using 4 module TEGs that arranged to Thermal Series - Series Circuit and using 2 heat pipes is 2.1-volt, and then it is possible to use for phone charger.


2013 ◽  
Vol 743-744 ◽  
pp. 105-110
Author(s):  
Hong Tao Yu ◽  
Zhi Feng Zhang ◽  
Qing Quan Qiu ◽  
Qiang Sun ◽  
Guo Min Zhang ◽  
...  

Semiconductor thermoelectric generators have a series of advantages, such as compact volume, high-level reliability, and effective power generation in the presence of temperature difference. In many occasions, as a result of high voltage, electrical equipments can't be measured by the way of direct contact. In order to avoid equipment faults caused by low-voltage contact, a thermoelectric generator which uses waste heat of electrical equipments in service was designed. Electrical equipments often operate below 400K, and in this condition Bi2Te3 shows an outstanding performance of power generation. In order to solve the problems of little temperature difference and output power on steady-state, two methods were introduced. On the one hand, the temperature difference can be increased by filling with thermal insulation padding between the p-n junctions and using a heat sink in the cold side, and on the other hand, the output voltage and power will be augmented by increasing the number of p-n junctions. These methods have been proved effectively by simulation and experiment with promising outcomes.


Sign in / Sign up

Export Citation Format

Share Document