Air Thin-Walled Parts Machining Precision Control

2014 ◽  
Vol 496-500 ◽  
pp. 1252-1255
Author(s):  
Liang Li

With the development of the aviation industry, the aircraft's increasingly high performance requirements, the overall application of thin-walled structural components became more widespread. However, due to the complex structure parts, thin wall, high precision machining process was complexity, the cutting force, cutting heat, clamping force under the influence of other factors, prone to machining distortion, and with the lower part wall thickness, decreased in rigidity, it was difficult to ensure processing quality. In this paper, we proposed several effective aviation thin-walled parts machining precision control program to solve the problems in the processing of machine structural characteristics of thin-walled parts .The results of experiments and production practice proved that these methods effectively control the air thin-walled parts machining precision machining to meet quality requirements, while reducing the processing time, improve processing efficiency, it was convenient and efficient processing methods.

2014 ◽  
Vol 701-702 ◽  
pp. 864-868
Author(s):  
Da Lin Zhang ◽  
Ke Gao ◽  
Tian Rui Zhou

Thin wall parts are used more and more extensively in industrial production, analyze the influence of precision machining of thin-walled parts not higher factor, through the example of how to improve the machining precision of thin-wall parts, and gives the specific measures to solve practical problems.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2094252
Author(s):  
Yunan Liu ◽  
Shutao Huang ◽  
Keru Jiao ◽  
Lifu Xu

Thin-walled workpieces of silicon carbide particle-reinforced aluminum matrix (SiCp/Al) composites with outstanding properties have been widely applied in many fields, such as automobile, weapons, and aerospace. However, the thin-walled workpieces exhibit poor rigidity, large yield ratio, and easily deform under the cutting force and cutting heat during the machining process. Herein, in order to improve the processing efficiency and precision of higher volume fraction SiCp/Al composite thin-walled workpieces, the influence of different high-speed milling parameters and machining paths on the edge defects is analyzed. The results reveal that the cutting force initially increased and then decreased with the cutting speed. Besides, the cutting force steadily increased with radial cutting depth and feed per tooth, but the influence of feed per tooth is less than radial cutting depth. After up-milling cut-in and cut-out processing and down-milling cut-out processing, the cut-in end of the workpiece exhibited higher breakage and obvious edge defects. However, the workpiece edges remained intact after down-milling cut-in processing. In conclusion, a higher cutting speed, a smaller radial cutting depth, and moderate feed per tooth are required to decrease the cutting force during the milling of SiCp/Al composite thin-walled workpiece. Furthermore, down-milling cut-in processing mode can reduce the edge defects and improve the processing efficiency and precision of the workpiece.


2020 ◽  
Vol 14 ◽  
Author(s):  
Song Yang ◽  
Tie Yin ◽  
Feiyue Wang

Background: Thin-walled parts of aluminum alloy are easy to occur machining deformation duo to the characteristics of thin wall, low rigidity, and complex structure. Objective: To reduce and control the machining deformation, it is necessary to select reasonable machining parameters. Method: The influence of milling parameters on the milling forces, milling temperature, and machining deformation was analyzed through the established model based on ABAQUS. Then, the corresponding empirical formula was obtained by MATLAB, and parameters optimization was carried out as well. Besides, a lot of patents on machining thin-walled parts were studied. Results: The results shown that the prediction error of milling forces is about 15%, and 20% of milling temperature. In this case, the optimized milling parameters are as follows: ap=1 mm, ae=0.1 mm, n=12 000 r/min, and f=400 mm/min. It is of great significance to reduce the machining deformation and improve the machining quality of thin-walled parts.


2021 ◽  
Author(s):  
Xiaohua Zhu ◽  
Yao Zhang ◽  
Tian Li ◽  
Liangliang Dong ◽  
Junlei Tang ◽  
...  

Abstract Combustion chamber casing is a key component of aeroengine, because of its poor rigidity, severe chattering occurs during milling, which seriously affects the surface quality and processing efficiency of the casing, and the existence of geometric nonlinear problems in the machining process makes it difficult to predict machining vibration. Therefore, it is of great significance to study the vibration law of thin-walled casing and reduce machining vibration. Aiming at the problem of vibration control of thin-walled casing, this paper proposes a new type of gasbag-rubber damping flexible fixture, which differ from the ordinary rigid fixture, this fixture has adjustable clamping force and good vibration damping ability. The key factors affecting the vibration response of the thin-walled casing are studied through establishing an equivalent dynamic model of the workpiece-fixture system. The research results show that the gasbag-rubber damping flexible fixture can effectively provide support stiffness, which is beneficial to reduce the vibration of the workpiece during processing; According to the actual thickness of different workpieces, the appropriate gasbag pressure is recommended to give play to the vibration damping performance of the fixture; It is recommended that the thickness of the rubber damping block in practice is 8~12mm. The research work in this paper has important guiding significance for the design and use of the gasbag-rubber damping flexible fixture, and provides an effective theoretical prediction for the vibration of the thin-walled casing.


2016 ◽  
Vol 836-837 ◽  
pp. 296-303
Author(s):  
Dong Sheng Liu ◽  
Ming Luo ◽  
Ding Hua Zhang

Thin-walled workpieces are widely used in the aerospace manufacturing industry in order to reduce the weight of structure and improve working efficiency. However, vibration is easy to occur in machining of thin-walled structures due to its low stiffness. Machining vibration will result in lower machining accuracy as well as machining efficiency. In order to reduce the machining vibrations of thin-wall workpieces, commonly used method is to select proper machining parameters according to the chatter stability lobes, which is generated according to the machining system parameters. However, this method requires exact system parameters to be determined, which are always changing in the machining process. In this paper, a special designed fixture with damping materials for the thin-walled workpiece is presented based on the machining vibration control theory, and analysis of the effect of vibration suppressing is obtained through the contrast of vibration tests of milling the thin-walled workpiece on the damping clamp. The damping material is used to consume vibration energy and provide support for thin-walled structure. Machining test was carried out for thin-walled structure machining to validate the effectiveness of the proposed method.


2019 ◽  
Vol 297 ◽  
pp. 01010
Author(s):  
Michail Nazarov ◽  
Evgeny Kiselev

The work is devoted to the problems of manufacturing thinwalled parts of the aviation industry and instrument engineering on modern numerical control machines. The main reason of defects of such products -loss of dimensional accuracy is revealed. The reason for this is the elastic deformation of the workpiece during milling. A mathematical model for calculating the elastic pressing of a thin wall during milling is proposed. The method of checking the adequacy of the developed model with the help of engineering analysis system is presented. The minimum set of geometrical parameters of the processed element and the cutting tool necessary for search of the rational cutting mode was defined. A new approach to automation of this process present through the evaluation of all possible solutions. The calculation of the rational cutting mode was made taking into account the conditions of rigidity of the workpiece. Conclusions on the efficiency of the developed technique are made.


Author(s):  
Jingkai Zeng ◽  
Koji Teramoto ◽  
Dongjin Wu ◽  
Hiroki Matsumoto

Abstract Due to the higher structure efficiency and lightweight characteristic, thin-walled parts are widely used in the modern manufacturing industry. However, from another point of view, these parts are complex in structure, weak stiffness and high precision demand. During the machining process, because of the material properties and structural characteristics, the action of elastic deformation in machining is heavily affected by the accuracy of thin-walled parts. Recently, novel near-net-shape machining methods which can be applicable to small-lot production such as thin-walled casting, additive manufacturing, and so on becomes common technology. Finish machining of these thin-walled and complex shape workpiece is an important target of machining. In the small lot production, most of fixturing process is executed as manual operations, which generate large process variations. These variations lead to deteriorate machining accuracy. Especially, the wrong operation for the fixture clamping sequence generates different workpiece deformation. The objective of this research is to estimate actual workpiece deformation by utilizing locally measured strains and fixturing simulation in order to detect unallowable workpiece deformation caused by the wrong clamping sequence. In this research, workpiece deformations for different clamping sequences are evaluated based on the engineering experiments. Verifications of estimated workpiece deformations are carried out. Through this research, we can effectively estimate the workholding situation of the thin-walled parts during the machining process.


2010 ◽  
Vol 129-131 ◽  
pp. 246-250
Author(s):  
Yi Shu Hao ◽  
Bao Gang Zhang ◽  
Xu Cui

According to the structural features of the supporting part, the manufacturing process plan of it is made and the fixtures are designed. The process parameters are optimized by the means of setting up multi-objective function that cover productivity, cost of production, processing efficiency; The NC Programs of supporting part are drawn with UG CAM and the machining tool-path is optimized through machining simulation.


2021 ◽  
Vol 11 (12) ◽  
pp. 5570
Author(s):  
Binbin Wang ◽  
Jingze Liu ◽  
Zhifu Cao ◽  
Dahai Zhang ◽  
Dong Jiang

Based on the fixed interface component mode synthesis, a multiple and multi-level substructure method for the modeling of complex structures is proposed in this paper. Firstly, the residual structure is selected according to the structural characteristics of the assembled complex structure. Secondly, according to the assembly relationship, the parts assembled with the residual structure are divided into a group of substructures, which are named the first-level substructure, the parts assembled with the first-level substructure are divided into a second-level substructure, and consequently the multi-level substructure model is established. Next, the substructures are dynamically condensed and assembled on the boundary of the residual structure. Finally, the substructure system matrix, which is replicated from the matrix of repeated physical geometry, is obtained by preserving the main modes and the constrained modes and the system matrix of the last level of the substructure is assembled to the upper level of the substructure, one level up, until it is assembled in the residual structure. In this paper, an assembly structure with three panels and a gear box is adopted to verify the method by simulation and a rotor is used to experimentally verify the method. The results show that the proposed multiple and multi-level substructure modeling method is not unique to the selection of residual structures, and different classification methods do not affect the calculation accuracy. The selection of 50% external nodes can further improve the analysis efficiency while ensuring the calculation accuracy.


Sign in / Sign up

Export Citation Format

Share Document