Development of BIM Technology in Steel Structure Design Software

2014 ◽  
Vol 501-504 ◽  
pp. 2546-2549
Author(s):  
Lu Shuang Wei ◽  
Qun Wei ◽  
Kai Sun

The workflow of traditional steel often causes the lack of information, and the high cost, reduced efficiency in the various stages of the project. BIM technology simulate building by digital real information, share the information by central document, that close connection with the various stages of the process, and exchange information, so as to improve efficiency and reducecosts.Based on the concept of Building Information Model, the article explains the design and construction of 3D SteelGate software system. By adopting the Object-Oriented Design model, the article established parameterized database used for model construction in steel constructions. Article also describes the application in steel design software with the help of design model, analysis model and the drafting model.

2014 ◽  
Vol 889-890 ◽  
pp. 37-42
Author(s):  
Min Qian Zhang ◽  
Qi Lin Zhang ◽  
Zhi Guo Chang

Current steel structure design software cannot calculate sectional properties of user-defined section of cold-formed thin-wall steel accurately. Since the sectional properties data given by design code has been implanted into corresponding modules of these software and the software disregard the radian of corner of steel, erroneous results will be generated if the user-defined sectional size doesn't match the sectional size of the data file implanted. According to Green's theorem, the author derived precise formulas for sectional properties of arbitrary section and developed software for calculation based on Visual C++ platform. The software which can calculate exact solution of sectional properties of arbitrary section has been verified by comparing results from various methods. This software can be used independently as a calculating tool and the calculation module can be implanted into other steel structure design software to make calculation for sectional properties of arbitrary section possible.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Zhimin Wang ◽  
Jin Liu

With the fast expansion of major cities in China, increasing scale, complex, and tall buildings have been built to meet the increasing commercial and living demand. However, the efficiency of project management and investment is not always satisfactory. To solve this problem, a seven-dimensional building information model (7D BIM) is developed. To do this, a 3D BIM is firstly developed, which consists of architecture model, equipment model, steel framework model, other solid models, etc. Then, a 1D schedule management model and a 3D project management model (bidding management, enterprise quota management, and process management) have been integrated into the 3D BIM, thus forming a 7D BIM for a complex project. By providing a clear 3D vision in modeling the construction process, the proposed 7D model can be applied to help engineers/project managers carry out clash detection, structure design, modification, equipment installation, 3D project management, and maintenance after construction. The performance of this model has been demonstrated through a case study of a complex project launched in China. The study shows that the implementation of the 7D BIM has achieved significant cost and time saving as well as project quality and work efficiency improvement.


2019 ◽  
Vol 267 ◽  
pp. 02001
Author(s):  
Liangli Xiao ◽  
Yan Liu ◽  
Zhuang Du ◽  
Zhao Yang ◽  
Kai Xu

This study combines specific high-rise shear wall residential projects with the Revit to demonstrate BIM application processes. The use of R-Star CAD may help to realize the link barrier of the building information model and the structural analysis software PKPM. Sequentially, the information supplement of the structural analysis model is completed by extracting the structural information with the Revit secondary development. By the collaborative design platform based on BIM technology, the paper examines the collision check of structural model, conducts collision analysis on other professional models and modifies the design scheme for conflict points. After the statistics of material usage, an optimized design is proposed. The findings of this paper could contribute to provide some reference for the specific application of BIM in structural design and realize the application of BIM technology in the process of building structure design.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 174-192
Author(s):  
Alcinia Zita Sampaio ◽  
Augusto Martins Gomes

The building information modelling (BIM) methodology supports collaborative works, based on the centralization of all information in a federated BIM model and on an efficient level of interoperability between BIM-based platforms. Concerning the structure design, the interoperability capacity of the most used software presents limitations that must be identified and alternative solutions must be proposed. This study analyzes the process of transfer of structure models between modeling and structure analysis tools. Distinct building cases were performed in order to recognize the type of limitations verified in the transfer processes concerning two-way data flow between several software. The study involves the modeling software ArchiCAD 2020, Revit 2020, and AECOsim 2019 and the structure analyzes tools SAP 2020, Robot 2020, and ETABS 22020. The transfer processes are realized in two ways: using the native data format; using a universal standard data transfer, the Industry Foundation Classes (IFC) format. The level of maturity of BIM in structure design is still relatively low, caused essentially by interoperability problems, but despite the limitations detected, this study shows throughout the development of several building case, that the methodology has clear advantages in the development of the structure project.


2020 ◽  
Vol 12 (24) ◽  
pp. 10686
Author(s):  
Mona Abouhamad ◽  
Metwally Abu-Hamd

The objective of this paper is to apply the life cycle assessment methodology to assess the environmental impacts of light steel framed buildings fabricated from cold formed steel (CFS) sections. The assessment covers all phases over the life span of the building from material production, construction, use, and the end of building life, in addition to loads and benefits from reuse/recycling after building disposal. The life cycle inventory and environmental impact indicators are estimated using the Athena Impact Estimator for Buildings. The input data related to the building materials used are extracted from a building information model of the building while the operating energy in the use phase is calculated using an energy simulation software. The Athena Impact Estimator calculates the following mid-point environmental measures: global warming potential (GWP), acidification potential, human health potential, ozone depletion potential, smog potential, eutrophication potential, primary and non-renewable energy (PE) consumption, and fossil fuel consumption. The LCA assessment was applied to a case study of a university building. Results of the case study related to GWP and PE were as follows. The building foundations were responsible for 29% of the embodied GWP and 20% of the embodied PE, while the CFS skeleton was responsible for 30% of the embodied GWP and 49% of the embodied PE. The production stage was responsible for 90% of the embodied GWP and embodied PE. When benefits associated with recycling/reuse were included in the analysis according to Module D of EN 15978, the embodied GWP was reduced by 15.4% while the embodied PE was reduced by 6.22%. Compared with conventional construction systems, the CFS framing systems had much lower embodied GWP and PE.


2013 ◽  
Vol 368-370 ◽  
pp. 78-82
Author(s):  
Ping Shu ◽  
Jun Xu ◽  
Li Jun Wang

Based on theoretical studies of the urban spatial morphology, this paper introduces advanced concepts and methods of BIM (Building Information Model) into the urban design in Nanhe City ,and then respectively makes innovations of the urban design practice supported by BIM technology in the process of design, optimization and implementation of the program, attempting to explore BIM-based design patterns of the urban spatial morphology to make the traditional urban design process more rational and scientific, to expect to reach the green and sustainable urban spatial morphology.


Sign in / Sign up

Export Citation Format

Share Document