Study on Compression Resistance under Different Confining Pressures and Parameters of Cam-Clay Model of Bentonite

2014 ◽  
Vol 501-504 ◽  
pp. 430-433
Author(s):  
Jun Jie Hou ◽  
Lan Qiao ◽  
Qing Chi Cai ◽  
Zhen Li

Factors such as density and confining pressure effect on the compressive strength were analyzed by comparing the experimental results under different conditions, the parameters of Cambridge model were worked out with the data from consolidation test.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tianpeng Li ◽  
Junli Han ◽  
Shixin Wang ◽  
Yong He ◽  
Xiong Chen ◽  
...  

To describe the effect of confining pressure on the mechanical responses of N15 propellant, a constitutive model considering the confining pressure effect was first established for N15 propellant based on the elastic-viscoelastic correspondence principle. Then, the mechanical properties of N15 solid propellant under different confining pressures were obtained using confining pressure test system, and the obtained results indicate that the initial modulus of propellant did not change with confining pressure, but the maximum tensile strength, rupture strength, the maximum elongation, and elongation at break increased with increasing confining pressure. In conjunction with propellants’ mesoscopic structure and cross-section analysis, the mechanical mechanism of confining pressure effect on propellant was initially disclosed. Due to confining pressure, the particle dewetting inside the propellant was reduced, the hole propagation was delayed, and crack extension inhibited germination, proving that confining pressure has a strengthening impact on the propellant. Finally, assuming that the model parameters were dependent on pressure, the model parameters acquisition and validation were conducted. The results demonstrated that constitutive model can describe confining pressure influence on the mechanical properties of N15 propellant accurately.


2021 ◽  
Vol 18 (2) ◽  
pp. 1-19
Author(s):  
Zhixiang Song ◽  
Junwen Zhang

Abstract Conventional triaxial loading tests with different confining pressures and stress-seepage coupling tests on sandstone with different confining pressures and seepage pressures were conducted. A permeability model considering strength and strain was established, which better characterized the progressive deformation mechanical behaviour of sandstone under stress-seepage coupling. The results showed the following. (i) The confining pressure not only affects the peak strength of sandstone but also affects the axial deformation under conventional triaxial loading conditions. (ii) Compared with the seepage pressure effect, the degree of the confining pressure effect on the strength of sandstone was weaker, but the degree of that on the axial, radial and volumetric deformations of sandstone was stronger under stress-seepage coupling. (iii) With increasing confining pressure, the axial strain of sandstone decreased, while the corresponding radial and volumetric strains showed progressively increasing evolution characteristics under identical seepage pressures and different confining pressures. With increasing seepage pressure, the axial strain continuously decreased, while the corresponding radial and volumetric strains showed the progressive evolution characteristic of first increasing and then decreasing under identical confining pressures and different seepage pressures. (iv) Compared with the confining pressure effect, the degree of the seepage pressure effect on the permeability progressive evolution law of sandstone was weaker under stress-seepage coupling. The research conclusions could enrich the theories for the prevention and control of water inrush accidents in coal mines.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1662 ◽  
Author(s):  
Jianguo Wang ◽  
Bowen Hu ◽  
Jia Hwei Soon

The variation of physical and mechanical properties of the lightweight bulk filling material with cement and expanded polystyrene (EPS) beads contents under different confining pressures is important to construction and geotechnical applications. In this study, a lightweight bulk filling material was firstly fabricated with Singapore marine clay, ordinary Portland cement and EPS. Then, the influences of EPS beads content, cement content, curing time and confining pressure on the mass density, stress–strain behavior and compressive strength of this lightweight bulk filling material were investigated by unconsolidated and undrained (UU) triaxial tests. In these tests, the mass ratios of EPS beads to dry clay (E/S) were 0%, 0.5%, 1%, 2%, and 4% and the mass ratios of cement to dry clay (C/S) were 10% and 15%. Thirdly, a series of UU triaxial tests were performed at a confining pressure of 0 kPa, 50 kPa, 100 kPa, and 150 kPa after three curing days, seven curing days, and 28 curing days. The results show that the mass density of this lightweight bulk filling material was mainly controlled by the E/S ratio. Its mass density decreased by 55.6% for the C/S ratio 10% and 54.9% for the C/S ratio 15% when the E/S ratio increased from 0% to 4% after three curing days. Shear failure more easily occurred in the specimens with higher cement content and lower confining pressure. The relationships between compressive strength and mass density or failure strain could be quantified by the power function. Increasing cement content and reducing EPS beads content will increase mass density and compressive strength of this lightweight bulk filling material. The compressive strength with curing time can be expressed by a logarithmic function with fitting correlation coefficient ranging from 0.83 to 0.97 for five confining pressures. These empirical formulae will be useful for the estimation of physical and mechanical properties of lightweight concretes in engineering application.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xin Li ◽  
Hao Li ◽  
Zhen Yang ◽  
Zhongxue Sun ◽  
Jiayu Zhuang ◽  
...  

With the deep mining of coal, the phenomenon of high ground stress is more likely to cause dynamic disaster. In view of the above problems, this paper takes the unloading process of coal mining as the background to study the effects of mining rates under different conditions on the mechanical properties and triaxial failure criterion of composite coal-rock, so as to provide a theoretical basis for the prevention and control of dynamic disasters in coal mines. The composite coal-rock models with a composite ratio of 1 : 1 : 1 were tested under different unloading rates or confining pressures. The results show that the triaxial unloading process of coal-rock can be divided into five stages: compaction, single elasticity, elastic-plastic unloading, partial fracture, and complete fracture. In this paper, the failure criterion of composite coal-rock triaxial unloading is derived. The unloading rate has an exponential relationship with the triaxial compressive strength, and the relationship between initial confining pressure and compressive strength is linear. The triaxial compressive strength is determined by both. The peak strains ε of all samples under different unloading conditions were around 0.01. And initial confining pressure had an influence on the strain variation trend during the unloading of composite coal-rock. The higher the initial confining pressure, the greater the elastic modulus. In addition, an increase of initial confining pressure led to the increase of the total energy converted into dissipated part in the process of fracture and caused the obvious increase of the rebound characteristics of the curve. However, the unloading rate had no influence on the strain trend.


1983 ◽  
Vol 20 (2) ◽  
pp. 344-352 ◽  
Author(s):  
David H. Zeuch

Twenty-one constant-strain-rate compression tests have been performed on 80 mL/kg (20 gallons/ton) Anvil Points oil shale at elevated temperatures (50–200 °C) and confining pressures (0.5–40 MPa). The strength of oil shale increases approximately linearly with confining pressure and decreases nonlinearly with temperature. Ductility is greatly enhanced by the application of confining pressure. Elevated temperatures have little influence on ductility at low confining pressures; however, temperature exerts a progressively more pronounced influence on ductility with increasing confining pressure. A purely empirical failure law, incorporating the effects of temperature and confining pressure, has been fitted to the data. The failure law is in good agreement with the results of other studies on the compressive strength of oil shale. Keywords: oil shale, strength–temperature–pressure behaviour, rock mechanics, kerogen.


1991 ◽  
Vol 113 (3) ◽  
pp. 260-265 ◽  
Author(s):  
J. P. Nadreau ◽  
A. M. Nawwar ◽  
Y. S. Wang

Tests have been conducted on freshwater columnar ice samples to determine the uniaxial and triaxial compressive strength of the ice. Four parameters were varied. The confining pressure was increased up to 2.85 MPa (400 psi) in steps of 0.7 MPa (100 psi). The strain rate was varied in order to obtain the ductile to brittle transition peak. Temperature was kept mainly at −2°, with two series at −10°C and −20°C, and samples were machined with axes parallel, perpendicular or at a 45-deg angle to the direction of ice growth. The results are presented within their original context, but analyzed with reference to recent studies conducted on the multiaxial behavior of ice.


Sign in / Sign up

Export Citation Format

Share Document