Wireless Pressure Sensor System

2014 ◽  
Vol 530-531 ◽  
pp. 75-78
Author(s):  
Xin Gao ◽  
Piotr Mackowiak ◽  
Biswajit Mukhopadhyay ◽  
Oswin Ehrmann ◽  
Klaus Dieter Lang ◽  
...  

This system consists of a pressure silicon sensor, calibration module and wireless module. The pressure sensor used in this work is a piezoresistive silicon sensor that developed by Technical University Berlin. After calibration of the sensors output signals, the XBee-chip was used for wireless transmission. The three components with peripheral circuits and batteries were integrated in a 50mm × 50mm PCB. The system was then tested in a climate chamber at different temperatures and pressures. Programs for signal receiving and processing were developed in Matlab-environment. The experimental results show that this system works well for the short range (15m indoor).

2014 ◽  
Vol 530-531 ◽  
pp. 28-32 ◽  
Author(s):  
Xin Gao ◽  
Piotr Mackowiak ◽  
Biswajit Mukhopadhyay ◽  
Oswin Ehrmann ◽  
Klaus Dieter Lang ◽  
...  

The piezoresistive silicon pressure sensor used in this work is developed by Technical University Berlin. It is mainly composed of a silicon-membrane and four implanted piezoresistors connected in form of a Wheatstone bridge. After wire bonding, the sensor was evaluated in a climate cabinet at different temperatures and pressures. The characteristic curve of the sensor shows its good linearity and strong dependence on the temperature. The sensor ́s temperature coefficient of sensitivity and zero shift were compensated using ASIC MLX90308. The experimental results show that this method of compensation accurately solved the sensors temperature dependence problems.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1316
Author(s):  
Daniel Mahon ◽  
Gianfranco Claudio ◽  
Philip Eames

To improve the energy efficiency of an industrial process thermochemical energy storage (TCES) can be used to store excess or typically wasted thermal energy for utilisation later. Magnesium carbonate (MgCO3) has a turning temperature of 396 °C, a theoretical potential to store 1387 J/g and is low cost (~GBP 400/1000 kg). Research studies that assess MgCO3 for use as a medium temperature TCES material are lacking, and, given its theoretical potential, research to address this is required. Decomposition (charging) tests and carbonation (discharging) tests at a range of different temperatures and pressures, with selected different gases used during the decomposition tests, were conducted to gain a better understanding of the real potential of MgCO3 for medium temperature TCES. The thermal decomposition (charging) of MgCO3 has been investigated using thermal analysis techniques including simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA/DSC), TGA with attached residual gas analyser (RGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (up to 650 °C). TGA, DSC and RGA data have been used to quantify the thermal decomposition enthalpy from each MgCO3.xH2O thermal decomposition step and separate the enthalpy from CO2 decomposition and H2O decomposition. Thermal analysis experiments were conducted at different temperatures and pressures (up to 40 bar) in a CO2 atmosphere to investigate the carbonation (discharging) and reversibility of the decarbonation–carbonation reactions for MgCO3. Experimental results have shown that MgCO3.xH2O has a three-step thermal decomposition, with a total decomposition enthalpy of ~1050 J/g under a nitrogen atmosphere. After normalisation the decomposition enthalpy due to CO2 loss equates to 1030–1054 J/g. A CO2 atmosphere is shown to change the thermal decomposition (charging) of MgCO3.xH2O, requiring a higher final temperature of ~630 °C to complete the decarbonation. The charging input power of MgCO3.xH2O was shown to vary from 4 to 8136 W/kg with different isothermal temperatures. The carbonation (discharging) of MgO was found to be problematic at pressures up to 40 bar in a pure CO2 atmosphere. The experimental results presented show MgCO3 has some characteristics that make it a candidate for thermochemical energy storage (high energy storage potential) and other characteristics that are problematic for its use (slow discharge) under the experimental test conditions. This study provides a comprehensive foundation for future research assessing the feasibility of using MgCO3 as a medium temperature TCES material. Future research to determine conditions that improve the carbonation (discharging) process of MgO is required.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1153
Author(s):  
Franz Konstantin Fuss ◽  
Asliza Ahmad ◽  
Adin Ming Tan ◽  
Rizal Razman ◽  
Yehuda Weizman

Hard-shell thoracolumbar sacral orthoses (TLSOs) are used for treating idiopathic scoliosis, a deformation of the spine with a sideways curvature. The pressure required inside the TLSO for ideal corrective results remains unclear. Retrofitting TLSOs with commercially available pressure measurement systems is expensive and can only be performed in a laboratory. The aim of this study was to develop a cost-effective but accurate pressure sensor system for TLSOs. The sensor was built from a piezoresistive polymer, placed between two closed-cell foam liners, and evaluated with a material testing machine. Because foams are energy absorbers, the pressure-conductance curve was affected by hysteresis. The sensor was calibrated on a force plate with the transitions from loading to unloading used to establish the calibration curve. The root mean square error was 12% on average within the required pressure range of 0.01–0.13 MPa. The sensor reacted to the changing pressure during breathing and different activities when tested underneath a chest belt at different tensions. The peak pressure reached 0.135 MPa. The sensor was further tested inside the scoliosis brace during different activities. The measured pressure was 0.014–0.124 MPa. The results from this study enable cheaper and mobile systems to be used for clinical studies on the comfort and pressure of braces during daily activities.


2013 ◽  
Vol 718-720 ◽  
pp. 1740-1745
Author(s):  
Tulu Muluneh Mekonnen ◽  
De Ning Jiang ◽  
Yong Xin Feng

Vehicle collision sensor system and reporting accident to police is an electronic device installed in a vehicle to inform police man in case of accident to track the vehicles location. This system works using pressure sensor, GPS and GSM technology. These technology embedded together to sense the vehicle collision and indicate the position of the vehicle or locate the place of accident in order to solve the problem immediately (as soon as possible).For doing so AT89S52 microcontroller is interfaced serially to a GSM modem, GPS receiver, and pressure sensor. A GSM modem is used to send the position (Latitude and Longitude) of the vehicle, the plate of the vehicle and the SMS text from the accident place. The GPS modem will continuously give the data (longitude and latitude) and Load sensor senses the collision of the vehicle against obstacles and input to microcontroller. As load sensor senses the collision, the GSM start to send the plate of the vehicle, text message and the position of the vehicle in terms of latitude and longitude in real time.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3790
Author(s):  
Zachary Choffin ◽  
Nathan Jeong ◽  
Michael Callihan ◽  
Savannah Olmstead ◽  
Edward Sazonov ◽  
...  

Ankle injuries may adversely increase the risk of injury to the joints of the lower extremity and can lead to various impairments in workplaces. The purpose of this study was to predict the ankle angles by developing a footwear pressure sensor and utilizing a machine learning technique. The footwear sensor was composed of six FSRs (force sensing resistors), a microcontroller and a Bluetooth LE chipset in a flexible substrate. Twenty-six subjects were tested in squat and stoop motions, which are common positions utilized when lifting objects from the floor and pose distinct risks to the lifter. The kNN (k-nearest neighbor) machine learning algorithm was used to create a representative model to predict the ankle angles. For the validation, a commercial IMU (inertial measurement unit) sensor system was used. The results showed that the proposed footwear pressure sensor could predict the ankle angles at more than 93% accuracy for squat and 87% accuracy for stoop motions. This study confirmed that the proposed plantar sensor system is a promising tool for the prediction of ankle angles and thus may be used to prevent potential injuries while lifting objects in workplaces.


Author(s):  
Mohammad Hemmat Esfe

In the present article, the effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluid have been investigated experimentally. The experiments have been conducted in volume fractions of 0 to 1.5 % and temperatures from 27.5 to 50 °C. The shear stress computed by experimental values of viscosity and shear rate for volume fraction of 1% and in different temperatures show that this nanofluid has Newtonian behaviour. The experimental results reveal that in a given volume fraction when temperature increases, viscosity decreases, but relative viscosity varies. Also, in a specific temperature, nanofluid viscosity and relative viscosity increase when volume fraction increases. The maximum amount of increase in relative viscosity is 82.46% that occurs in volume fraction of 1.5% and temperature of 50 °C. Some models of computing nanofluid viscosity have been suggested. The greatest difference between the results obtained from these models and experimental results was down of 4 percent that shows that there is a very good agreement between experimental results and the results obtained from these models.


2010 ◽  
Vol 53 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Noriaki Matsubara ◽  
Shigeru Miyachi ◽  
Yoshitaka Nagano ◽  
Tomotaka Ohshima ◽  
Osamu Hososhima ◽  
...  

Tire pressure monitoring device/system (TPMS) is an electronic device that monitors the air strain of an vehicle tire and indicates the pressure to the driver.Upkeep of tire strain in automobile is vital owing to the reality depletion within the strain of tire ends up in diminished combustible potency and future scratch in tires which ends up in substitution of tires fairly again and again. In this paper the used conception relies upon eliminating above problems and observing those facts continuously using pressure sensor with the help of some devices and wireless modules such as zigbee or rf-transreciever and also STM32 on-chip computer. A different mouth is distended other than conventional muzzle within that device is found which communicate via wireless apparatus and obtained with the help of the wireless module such as zigbee gift out of doors and also the signal is been dispatched to on-chip computer which computer screen units and unveil the strain name (name of tire) and actual strain on a screen monitor which notify the person to fill the air in tire. With the use of this system the user of the vehicle can eliminate the wheel is alignment and supply protection to the vehicle.


2019 ◽  
Vol 17 (23) ◽  
pp. 5666-5670 ◽  
Author(s):  
Won-Geun Kim ◽  
Chris Zueger ◽  
Chuntae Kim ◽  
Winnie Wong ◽  
Vasanthan Devaraj ◽  
...  

This study includes the experimental results of a sensitive M13 bacteriophage-based sensor system that are well matched with the quantum mechanics calculation.


Sign in / Sign up

Export Citation Format

Share Document