Experimental Study on Basic Performance and Noise Characteristics of Rubber Cement Concrete with Silica Fume

2014 ◽  
Vol 543-547 ◽  
pp. 4027-4030 ◽  
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Jian Peng Zhang

This article has carried on the silicon ash content under the condition of 10%, and different rubber particle size and different dosage of silica fume rubber modified cement concrete in all kinds of performance testing, such as: the experiment research on compressive strength, splitting tensile strength, flexural strength and strong noise reduction performance. Experimental results show that silica fume can help improve the compression, splitting and flexural strength of rubber concrete, ratio of fracture and pressure and ratio of tension and compression of concrete are improved greatly after adding silica fume;With the increase of rubber particles, dynamic modulus of concrete decreased, noise reduction effect of silica fume concrete is significantly modified .

2014 ◽  
Vol 670-671 ◽  
pp. 396-400 ◽  
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Jian Peng Zhang

This paper conducted all kinds of performance testing of different rubber particle size and different dosage of silica fume rubber modified cement concrete under the condition of 10% the silicon ash content, such as: analysis research of compressive strength, splitting tensile strength, flexural strength, and pull off the pressure ratio and pressure ratio. Experimental results show that silica fume can improve rubber concrete compressive strength, splitting, bending strength, the folding ratio, adding silica fume concrete fracture pressure ratio and compression ratio are improved; the silica fume can effectively improve large brittleness and lack toughness of concrete, and improve the compactness of concrete.


2012 ◽  
Vol 512-515 ◽  
pp. 2812-2816
Author(s):  
Wei Li ◽  
Xiao Chu Wang ◽  
Hong Tao Liu

This test summers up the research situation of rubber powder modifier. According to tests of density, flexural strength, compressive strength and cleavage strength, this test analyzes the basic mechanical properties and the variation of rubberized portland cement concrete which is mixing the silica fume modifier. The results show that the flexural strength, compressive strength and cleavage strength of concrete may increase when silica fume concrete admixture modifiers is mixed in cement concrete. The workability, density, flexural strength, compressive strength, ratio of compressive strength and cleavage strength of rubberized portland cement concrete gradually reduced with the increase in dosage of rubber. The rubber particles mixed with concrete which can when the rubber particle size is not more than 30% of the dosage of coarse aggregate, the fine pavement of rubberized portland cement concrete can be got.


2014 ◽  
Vol 953-954 ◽  
pp. 1524-1527
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Jian Peng Zhang

The test is divided into a rubber content of 0%, 5%, 10%, 15% and 20%,under the conditions that the SBR content 5% of cement mass, study the ratio of tension and pressure and fracture pressure performance of latex rubber modified concrete, and studies the noise reduction properties of concrete, test ultrasonic propagation velocity in the concrete. Tests show that rubber latex can improve the interface effect between rubbers and cement base material, improve the bonding strength between the two, improve the ratio of tension and pressure and fracture pressure ratio performance of concrete, and reduce the propagation velocity of ultrasonic in concrete, enhance the noise reduction performance of concrete.


2021 ◽  
Vol 9 (9) ◽  
pp. 962
Author(s):  
Myeong-rok Ryu ◽  
Kweonha Park

The International Maritime Organization (IMO) is strengthening regulations on reducing sulfur oxide emissions, and the demand for reducing exhaust noise affecting the environment of ships is also increasing. Various technologies have been developed to satisfy these needs. In this paper, a composite scrubber for ships that can simultaneously reduce sulfur oxide and noise was proposed, and the flow characteristics and noise characteristics were analyzed. For the silencer, vane type and resonate type were applied. In the case of the vane type, the effects of the direction, size, and location of the vane were analyzed, and in the case of the resonate type, the effects of the hole location and the number of holes were analyzed. The result shows that the length increase of the vane increased the average transmission loss and had a great effect, especially in the low frequency region. The transmission loss increased when the vane was installed outside, and the noise reduction effect was excellent when the vane was in the reverse direction. In the resonate type, increasing the number of holes is advantageous for noise reduction. The condition for maximally reducing noise in the range not exceeding 840 Pa, which is 70% of the allowable back pressure, is a vane length of 225 mm in the outer vane reverse type. The pressure drop under this condition was 777 Pa, and the average transmission losses in the low frequency region and the entire frequency region were 43.5 and 54.5 dB, respectively.


2021 ◽  
Vol 336 ◽  
pp. 01003
Author(s):  
Zixian Cui ◽  
Hao Song ◽  
Qi Li ◽  
Buchao An ◽  
Lin Su

The drag and noise reduction of the flow around a cylinder is one of the important topics in hydrodynamics and acoustics. In this paper, three typical bionic cylinders are designed based on the serrated structure on the surface of shark skin. Using Large eddy turbulence model and Lighthill’s acoustic analogy method, the flow noise characteristics of smooth cylinder and three kinds of bionic cylinders at different Reynolds numbers were compared, and the structure of cylinder surface was optimized. The results show that the main source of the flow noise around a cylinder is dipole noise, which is caused by the periodic fluctuating pressure on the cylinder surface.The bionic cylinder can reduce the amplitude of the fluctuating pressure, improve the wake flow field and reduce the wake vorticity, so as to reduce the noise. Among the three kinds of bionic cylinder, V-shaped bionic cylinder has the best noise reduction effect, and the critical value of S/H of V-shaped cylinder is about 2.5. When s / h > 2.5, V-shaped bionic cylinder has no effect of noise reduction.


2014 ◽  
Vol 919-921 ◽  
pp. 1908-1911
Author(s):  
Yan Cong Zhang ◽  
Shao Wen Liu ◽  
Ling Ling Gao

A number of rubber cement concrete specimens that rubber powder dosage different were obtained using same cement, water and fine aggregates, by adjusting the dosage of rubber powder. Then it was used to research the influence of rubber powder dosage on performance of cement concrete by measuring its liquidity, strength and toughness. The results show that: when water-cement ratio was equal and rubber powder replacing the same volume sand, the fluidity of cement concrete almost linear increased with rubber powder dosage increasing. With dosage of rubber powder increasing, compressive strength and flexural strength reduced, but toughness linear growth trend when dosage of rubber powder less 30%.


2014 ◽  
Vol 584-586 ◽  
pp. 1085-1088 ◽  
Author(s):  
Su Fen Dong

Interface bonding is the key technical problems of waste rubber in engineering application. Studies show that, with the increase of unmodified rubber particles dosage, the cement mortar 28 d compressive and flexural strength significantly reduce; when NaOH modified rubber particle content is less than or equal to 5%, it can reduce the compressive flexural strength reduction; The PVA modified rubber particles had no beneficial effect on the strength; rubber particles modified by silane coupling agent KH560, can greatly improve the rubber cement mortar 28 d compressive and flexural strength; the modifier mechanism is studied by scanning electron microscopy (SEM).


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ya Wang ◽  
Xianguang Wang ◽  
Liwen Zhang

To further reveal the road performance and noise reduction performance of open-graded friction course (OGFC), the crumb rubber prepared by adding waste tires were considered, and the performance requirements of the material were put forward. To avoid the influence of rubber particle swelling on aggregate, the special gradation and mix proportion of OGFC mixture were designed, and the particle size of 4.75 mm was proposed as the control size. The test results show that the aggregate forms a good embedded structure. The resilient modulus, deformation performance, and fatigue performance of R-OGFC asphalt mixture with different crumb rubber contents were studied. According to the test results, the rubber particle content under the best road performance and noise reduction effect was proposed. The results show that, after adding a certain amount of crumb rubber, the performance of asphalt mixture has been greatly improved, especially the dynamic stability has been improved by 84%. Although the resilient modulus has decreased by 10%, the creep performance has decreased by 37%, and the fatigue life has decreased by 31% (2% rubber content), the noise reduction can reach 3.6–8.6 dB, and the noise reduction performance is significant. This shows that the best content of rubber particles is between 1.5% and 2%, and the R-OGFC mixture modified by rubber has a good application prospect.


2021 ◽  
Vol 11 (9) ◽  
pp. 3869
Author(s):  
Chen Niu ◽  
Yongwei Liu ◽  
Dejiang Shang ◽  
Chao Zhang

Superhydrophobic surface is a promising technology, but the effect of superhydrophobic surface on flow noise is still unclear. Therefore, we used alternating free-slip and no-slip boundary conditions to study the flow noise of superhydrophobic channel flows with streamwise strips. The numerical calculations of the flow and the sound field have been carried out by the methods of large eddy simulation (LES) and Lighthill analogy, respectively. Under a constant pressure gradient (CPG) condition, the average Reynolds number and the friction Reynolds number are approximately set to 4200 and 180, respectively. The influence on noise of different gas fractions (GF) and strip number in a spanwise period on channel flow have been studied. Our results show that the superhydrophobic surface has noise reduction effect in some cases. Under CPG conditions, the increase in GF increases the bulk velocity and weakens the noise reduction effect. Otherwise, the increase in strip number enhances the lateral energy exchange of the superhydrophobic surface, and results in more transverse vortices and attenuates the noise reduction effect. In our results, the best noise reduction effect is obtained as 10.7 dB under the scenario of the strip number is 4 and GF is 0.5. The best drag reduction effect is 32%, and the result is obtained under the scenario of GF is 0.8 and strip number is 1. In summary, the choice of GF and the number of strips is comprehensively considered to guarantee the performance of drag reduction and noise reduction in this work.


Sign in / Sign up

Export Citation Format

Share Document