scholarly journals Study on flow noise characteristics of Bionic cylinder based on acoustic analogy

2021 ◽  
Vol 336 ◽  
pp. 01003
Author(s):  
Zixian Cui ◽  
Hao Song ◽  
Qi Li ◽  
Buchao An ◽  
Lin Su

The drag and noise reduction of the flow around a cylinder is one of the important topics in hydrodynamics and acoustics. In this paper, three typical bionic cylinders are designed based on the serrated structure on the surface of shark skin. Using Large eddy turbulence model and Lighthill’s acoustic analogy method, the flow noise characteristics of smooth cylinder and three kinds of bionic cylinders at different Reynolds numbers were compared, and the structure of cylinder surface was optimized. The results show that the main source of the flow noise around a cylinder is dipole noise, which is caused by the periodic fluctuating pressure on the cylinder surface.The bionic cylinder can reduce the amplitude of the fluctuating pressure, improve the wake flow field and reduce the wake vorticity, so as to reduce the noise. Among the three kinds of bionic cylinder, V-shaped bionic cylinder has the best noise reduction effect, and the critical value of S/H of V-shaped cylinder is about 2.5. When s / h > 2.5, V-shaped bionic cylinder has no effect of noise reduction.

Author(s):  
Zhongya Su ◽  
Enbin Liu ◽  
Yawen Xu ◽  
Ping Xie ◽  
Chen Shang ◽  
...  

Manifolds play a role of pressure balance, buffering and rectification for different branch pipelines, the flow noise of manifolds has been a serious problem all this time in natural gas transmission station. By changing the number of outlet pipes of manifolds and the different positions of intake pipes, the distribution of the Sound Pressure Level (SPL) of the manifold flow noise is analyzed based on the Ffowcs Williams-Hawkings (FW-H) acoustic analogy theory and Large Eddy Simulations (LESs). The three-dimensional simulation analysis of the flow field shows that pressure pulsation is the mainly source of manifold noise, as the number of outlet pipe increases, the SPLs of fluid dynamic noise at the end of inlet pipes are significantly reduced by about 10 dB on average, when the inlet and outlet piping are oppositely connected, the SPL is 2 dB~3 dB lower than that in staggered connections. An expansion-chamber muffler is designed with the analysis of its noise reduction effect, the results show that after the muffler is installed, the noise reduction in the low-frequency ranges reaches up to 37.5 dB, which controls the maximum noise to around 82 dB.


2021 ◽  
Vol 11 (9) ◽  
pp. 3869
Author(s):  
Chen Niu ◽  
Yongwei Liu ◽  
Dejiang Shang ◽  
Chao Zhang

Superhydrophobic surface is a promising technology, but the effect of superhydrophobic surface on flow noise is still unclear. Therefore, we used alternating free-slip and no-slip boundary conditions to study the flow noise of superhydrophobic channel flows with streamwise strips. The numerical calculations of the flow and the sound field have been carried out by the methods of large eddy simulation (LES) and Lighthill analogy, respectively. Under a constant pressure gradient (CPG) condition, the average Reynolds number and the friction Reynolds number are approximately set to 4200 and 180, respectively. The influence on noise of different gas fractions (GF) and strip number in a spanwise period on channel flow have been studied. Our results show that the superhydrophobic surface has noise reduction effect in some cases. Under CPG conditions, the increase in GF increases the bulk velocity and weakens the noise reduction effect. Otherwise, the increase in strip number enhances the lateral energy exchange of the superhydrophobic surface, and results in more transverse vortices and attenuates the noise reduction effect. In our results, the best noise reduction effect is obtained as 10.7 dB under the scenario of the strip number is 4 and GF is 0.5. The best drag reduction effect is 32%, and the result is obtained under the scenario of GF is 0.8 and strip number is 1. In summary, the choice of GF and the number of strips is comprehensively considered to guarantee the performance of drag reduction and noise reduction in this work.


2022 ◽  
pp. 107754632110623
Author(s):  
Xianzhong Wang ◽  
Ning Li ◽  
Min Yu ◽  
Hongzhou Lin ◽  
Lili Ye

In this paper, the pipeline with guide vanes was taken as the research object, the flow noise was studied based on the hybrid calculation method, then the acoustic-structure coupling method was introduced to study the vibration and radiation noise, and then explored the best position of the guide vanes. Based on the pipeline experimental platform and improved experimental methods, it was found that the guide vanes had a better noise reduction effect on the elbows; based on that, a simulation study was carried out on the elbow with guide vanes, and the mechanism of the guide vanes on the velocity field and pulsating pressure of the pipeline was explored. Finally, the noise reduction effect at different positions of the guide vanes under different flow speeds was studied. The results indicated that the guide vane at the middle of the elbow had the best effect on improving the flow field and reducing noise in the working conditions studied in this article, providing a calculation basis for the design of the guide vane.


1961 ◽  
Vol 11 (2) ◽  
pp. 244-256 ◽  
Author(s):  
J. H. Gerrard

The oscillating lift and drag on circular cylinders are determined from measurements of the fluctuating pressure on the cylinder surface in the range of Reynolds number from 4 × 103 to just above 105.The magnitude of the r.m.s. lift coefficient has a maximum of about 0.8 at a Reynolds number of 7 × 104 and falls to about 0.01 at a Reynolds number of 4 × 103. The fluctuating component of the drag was determined for Reynolds numbers greater than 2 × 104 and was found to be an order of magnitude smaller than the lift.


2014 ◽  
Vol 543-547 ◽  
pp. 4027-4030 ◽  
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Jian Peng Zhang

This article has carried on the silicon ash content under the condition of 10%, and different rubber particle size and different dosage of silica fume rubber modified cement concrete in all kinds of performance testing, such as: the experiment research on compressive strength, splitting tensile strength, flexural strength and strong noise reduction performance. Experimental results show that silica fume can help improve the compression, splitting and flexural strength of rubber concrete, ratio of fracture and pressure and ratio of tension and compression of concrete are improved greatly after adding silica fume;With the increase of rubber particles, dynamic modulus of concrete decreased, noise reduction effect of silica fume concrete is significantly modified .


2021 ◽  
Vol 9 (9) ◽  
pp. 962
Author(s):  
Myeong-rok Ryu ◽  
Kweonha Park

The International Maritime Organization (IMO) is strengthening regulations on reducing sulfur oxide emissions, and the demand for reducing exhaust noise affecting the environment of ships is also increasing. Various technologies have been developed to satisfy these needs. In this paper, a composite scrubber for ships that can simultaneously reduce sulfur oxide and noise was proposed, and the flow characteristics and noise characteristics were analyzed. For the silencer, vane type and resonate type were applied. In the case of the vane type, the effects of the direction, size, and location of the vane were analyzed, and in the case of the resonate type, the effects of the hole location and the number of holes were analyzed. The result shows that the length increase of the vane increased the average transmission loss and had a great effect, especially in the low frequency region. The transmission loss increased when the vane was installed outside, and the noise reduction effect was excellent when the vane was in the reverse direction. In the resonate type, increasing the number of holes is advantageous for noise reduction. The condition for maximally reducing noise in the range not exceeding 840 Pa, which is 70% of the allowable back pressure, is a vane length of 225 mm in the outer vane reverse type. The pressure drop under this condition was 777 Pa, and the average transmission losses in the low frequency region and the entire frequency region were 43.5 and 54.5 dB, respectively.


2014 ◽  
Vol 8 (1) ◽  
pp. 960-966
Author(s):  
Xin Nie ◽  
Yangyang Zhu ◽  
Lei Li

Using the enterprise’s valve as the research object, the research studied the characteristics of the flow field and noise of the valve. The theory of (LES) LES and Lighthill acoustic analogy is applied to study the flow noise at 100% opening and at 70% opening of valve in the same flow. The result shows that the region of variation of pressure and velocity is in the valve sleeve window. The sound pressure spectrum characteristics of the same group of monitoring points were similar, when they were in low frequency. Acoustic pressure amplitude was observed to be relatively small, when monitoring points were in high frequency. When the valve opening decreased, because of the throttle effect of valve windows, the whole dB SPL of valve became strong. The noise outside the valve exhibited dipole characteristics.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Sign in / Sign up

Export Citation Format

Share Document