Effect of Air Movement to Spray Development of Rapeseed Oil in Diesel Engine

2014 ◽  
Vol 554 ◽  
pp. 479-483
Author(s):  
Azwan Sapit ◽  
Mohd Azahari ◽  
Mas Fawzi ◽  
Amir Khalid ◽  
Bukhari Manshoor

Fuel-air mixing is important process in diesel combustion. Generally there a two air mixing strategy, which is slow fuel – fast air mixing and fast fuel – slow air mixing. Air movement inside the combustion chamber greatly affect the mixing process and made effective fuel air mixing possible. Biomass fuel needs great help of mixing to atomization because the fuel has high viscosity and high distillation temperature. This study investigates the effect of air movement to spray development and atomization characteristics of rapeseed oil (RO). Optical observation of RO spray was carried out using shadowgraph photography technique and also using high speed camera. The results show that fast air movement effectively promotes RO spray atomization, with the RO spray expand outward from the main body through the whole spray length, which suggests fuel dispersion due to fast air movement.

2013 ◽  
Vol 315 ◽  
pp. 320-324 ◽  
Author(s):  
Azwan Sapit ◽  
Takashi Yano ◽  
Yoshiyuki Kidoguchi ◽  
Yuzuru Nada

Fuel-air mixing is important process in diesel combustion. It has been well known that wall configuration of the piston affects spray atomization. Biomass fuel, that is viable alternative fuel for fossil one, needs great help of mixing to atomization because the fuel has high viscosity and high distillation temperature. This study investigates spray atomization characteristics of rapeseed oil (RO) when it impinges on the piston wall. Optical observation of RO spray was carried out using shadowgraph photography technique. The optical images and image analysis show that wall impingement effectively promotes RO spray atomization. Spray atomization is more sensitive to wall configuration for RO than diesel fuel. The wall that has flat floor at the bottom can improve atomization. It is necessary for RO spray to promote spray penetration followed by wall-impingement because long spray path offers wide spray boundary region to form droplets.


2015 ◽  
Vol 773-774 ◽  
pp. 520-524
Author(s):  
Azwan Sapit ◽  
Mohd Azahari Razali ◽  
Mohd Faisal Hushim ◽  
M. Jaat ◽  
Akmal Nizam Mohammad ◽  
...  

Fuel-air mixing is important process in diesel combustion which significantly affects the combustion and emission of diesel engine. Due to the nature of biomass fuel that has high viscosity and high distillation temperature, the condition and furthermore the improvement of atomization process is very important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nanospark photography technique was used to study the characteristics of the rapeseed oil spray while dual nanospark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of RO spray also was studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.


Author(s):  
Irina Gunko

The viscosity of a fuel depends on its hydrocarbon composition. Vegetable oil is considered an alternative to diesel fuel. Its high viscosity makes it difficult to consider as a commercial diesel fuel. Vegetable oil is lipids, fatty acid esters. They have a high calorific value and contain straight hydrocarbon chains, resulting in their relatively high cetane number. Viscosity and density determine the evaporation and mixing process in an engine, as they affect the shape and type of the fuel flame, the size of the droplets formed, and how they enter the combustion chamber. Low density and viscosity provide better fuel injection; with an increase in the diameter of the droplet, its complete combustion decreases, therefore, the specific fuel consumption increases and the smoke of the exhaust gases increases. The viscosity of the fuel affects the pump flow and fuel leakage through the piston pair clearance. As the viscosity decreases, the amount of diesel fuel leaks between the plunger and bushing increases, resulting in a decrease in pump flow. Converting the engine to a fuel with a lower density and viscosity will result in burnout of the piston head, so the fuel equipment needs to be adjusted. Plunger wear is viscosity dependent. It fuel is in the range of 1.8-7.0 mm2/s, which practically does not affect the durability of modern high-speed diesel equipment. Consider using vegetable rapeseed oil as an alternative to diesel fuel. Its viscosity can be reduced by chemically converting esterification to ethyl esters. When the cheese rapeseed oil is heated to 80 °C, it will give a viscosity value similar to that of commercial diesel. The mixing system will have an operating power equivalent to that of a diesel engine when heated to 40-50 °C.


1998 ◽  
Vol 120 (1) ◽  
pp. 217-224
Author(s):  
F.-Q. Zhao ◽  
J.-H. Yoo ◽  
M.-C. Lai

An experimental study of the spray structure from air-shrouded dual-stream injectors with different air mixing mechanisms was carried out extensively to understand the spray characteristics of dual-stream port injectors for applications to four-valve gasoline engines. The injectors were tested under both steady and transient conditions at different injection pressures and air shrouding pressure differentials. The global spray structure was visualized using the planar laser Mie scattering technique and spray atomization processes were characterized by the phase-Doppler anemometry method. The experimental results showed that spray atomization characteristics are improved markedly by the air-shrouding technique and also strongly dominated by the air-mixing mechanisms. When the air flows into the injector tip mainly from the radial direction, two streams of the spray are forced to merge together and as a result a single-stream spray is formed. When the radial velocity component of the air is reduced and the air is made to mix well with the fuel inside the injector tip, however, the two streams of the spray are well separated over different injection conditions. Moreover, other spray parameters are also modified by the air shrouded into the injector, which must be optimized in order to achieve the best performance of the air-shrouded injector.


2012 ◽  
Vol 06 ◽  
pp. 419-424
Author(s):  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.


2006 ◽  
Vol 16 (8) ◽  
pp. 857-874 ◽  
Author(s):  
M. Thieme ◽  
Joachim Domnick

2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


Author(s):  
Manish Kumar ◽  
Srinibas Karmakar ◽  
Sonu Kumar ◽  
Saptarshi Basu

Potential alternative fuels that can mitigate environmental pollution from gas turbine engines (due to steep growth in the aviation sector globally) are getting significant attention. Spray behavior plays a significant role in influencing the combustion performance of such alternative fuels. In the present study, spray characteristics of Kerosene-based fuel (Jet A-1) and alternative aviation fuels such as butyl butyrate, butanol, and their blends with Jet A-1 are investigated using an air-blast atomizer under different atomizing air-to-fuel ratios. Phase Doppler Interferometry has been employed to obtain the droplet size and velocity distribution of various fuels. A high-speed shadowgraphy technique has also been adopted to make a comparison of ligament breakup characteristics and droplet formation of these alternative biofuels with that of Jet A-1. An effort is made to understand how the variation in fuel properties (mainly viscosity) influences atomization. Due to the higher viscosity of butanol, the SMD is higher, and the droplet formation seems to be delayed compared to Jet A-1. In contrast, the lower viscosity of butyl butyrate promotes faster droplet formation. The effects of the blending of these biofuels with Jet A-1 on atomization characteristics are also compared with that of Jet A-1.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Navid Shahangian ◽  
Damon Honnery ◽  
Jamil Ghojel

Interest is growing in the benefits of homogeneous charge compression ignition engines. In this paper, we investigate a novel approach to the development of a homogenous charge-like environment through the use of porous media. The primary purpose of the media is to enhance the spread as well as the evaporation process of the high pressure fuel spray to achieve charge homogenization. In this paper, we show through high speed visualizations of both cold and hot spray events, how porous media interactions can give rise to greater fuel air mixing and what role system pressure and temperature plays in further enhancing this process.


Sign in / Sign up

Export Citation Format

Share Document